Physics of the Solid State
Volumes and Issues
Spiral magnetic order and metal-insulator transition in the Hubbard model on a triangular lattice
Gilmutdinov V. F. 1, Timirgazin M. A. 1, Arzhnikov A. K. 1
1Udmurt Federal Research Center, Ural Branch Russian Academy of Sciences, Izhevsk, Russia

The magnetic phase diagrams of the two-dimensional Hubbard model for isotropic and anisotropic triangular lattices are constructed within the Hartree-Fock and slave boson approximations. The triangular lattice specific non-collinear and spiral magnetic states, as well as phase separation between them, are shown to be realized in a wide range of model parameters along with collinear magnetic states (stripe antiferromagnetic and ferromagnetic). Phase transitions of the first and second order are found, and the boundaries of the phase separation regions are determined. A comparison of the two approximations, Hartree-Fock and slave boson, shows that electronic correlations suppress magnetic states, the region of paramagnetism being expand, for values U/t>~=5. At the same time, when the Fermi level is near the van Hove singularity, electron correlations do not change the diagrams qualitatively, which is consistent with the previously obtained result for square and cubic lattices. The results are compared with the data available in the literature for other methods and approaches. Keywords: Hubbard model, phase separation, spiral magnetic order, triangular lattice, metal-insulator transition
  1. Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, G. Saito. Phys. Rev. Lett. 91, 10, 107001 (2003)
  2. P.W. Anderson. Mater. Res. Bull. 8, 2, 153 (1973)
  3. P. Limelette, P. Wzietek, S. Florens, A. Georges, T.A. Costi, C. Pasquier, D. Jerome, C. Mezi\`ere, P. Batail. Phys. Rev. Lett. 91, 1, 016401 (2003)
  4. H. Nakamura, T. Yamasaki, S. Giri, H. Imai, M. Shiga, K. Kojima, M. Nishi, K. Kakurai, N. Metoki. J. Phys. Soc. Jpn 69, 9, 2763 (2000)
  5. K. Pasrija, S. Kumar. Phys. Rev. B 93, 19, 195110 (2016)
  6. A. Feiguin, C. Gazza, A. Trumper, H. Ceatto. J. Phys.: Condens. Matter 9, 4, L27 (1999)
  7. K. Jiang, S. Zhou, Z. Wang. Phys. Rev. B 90, 16, 165135 (2014)
  8. T. Mizusaki, M. Imada. Phys. Rev. B 74, 1, 014421 (2006)
  9. K. Misumi, T. Kaneko, Y. Ohta. Phys. Rev. B 95, 7, 075124 (2017)
  10. M. Laubach, R. Thomale, C. Platt, W. Hanke, G. Li. Phys. Rev. B 91, 24, 245125 (2015)
  11. H. Morita, S. Watanabe, M. Imada. J. Phys. Soc. Jpn 71, 9, 2109 (2002)
  12. Z. Zhu, D.N. Sheng, A. Vishwanath. arXiv:2007.11963 (2020)
  13. A. Szasz, J. Motruk. arXiv:2101.07454 (2021)
  14. B. Kyung, A.-M.S. Tremblay. Phys. Rev. Lett. 97, 4, 046402 (2006)
  15. L. Tocchio, A. Montorsi, F. Becca. Phys. Rev. B 102, 11, 115150 (2020)
  16. L. Tocchio, H. Feldner, F. Becca, R. Valenti, C. Gros. Phys. Rev. B 87, 3, 035143 (2012)
  17. M. Capone, L. Capriotti, F. Becca, S. Caprara. Phys. Rev. B 63, 8, 085104 (2000)
  18. P.A. Igoshev, M.A. Timirgazin, V.F. Gilmutdinov, A.K. Arzhnikov, V.Y. Irkhin. J. Phys.: Condens. Matter 27, 44, 446002 (2015)
  19. M.A. Timirgazin, P.A. Igoshev, A.K. Arzhnikov, V.Y. Irkhin. J. Phys.: Condens. Matter 28, 50, 505601 (2016)
  20. G. Kotliar, A.E. Ruckenstein. Phys. Rev. Lett. 57, 11, 1362 (1986)
  21. P.A. Igoshev, M.A. Timirgazin, A.A. Katanin, A.K. Arzhnikov, V.Y. Irkhin. Phys. Rev. B 81, 9, 094407 (2010)
  22. Y. Nagaoka. Phys. Rev. 147, 1, 392 (1966)
  23. H. Tasaki. Phys. Rev. B 40, 13, 9192 (1989).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245