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The magnetic phase diagrams of the two-dimensional Hubbard model for isotropic and anisotropic triangular

lattices are constructed within the Hartree–Fock and slave boson approximations. The triangular lattice specific

non-collinear and spiral magnetic states, as well as phase separation between them, are shown to be realized in a

wide range of model parameters along with collinear magnetic states (stripe antiferromagnetic and ferromagnetic).
Phase transitions of the first and second order are found, and the boundaries of the phase separation regions

are determined. A comparison of the two approximations, Hartree–Fock and slave boson, shows that electronic

correlations suppress magnetic states, the region of paramagnetism being expand, for values U/t & 5. At the same

time, when the Fermi level is near the van Hove singularity, electron correlations do not change the diagrams

qualitatively, which is consistent with the previously obtained result for square and cubic lattices. The results are

compared with the data available in the literature for other methods and approaches.
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1. Introduction

Of particular interest in the study of magnetic properties

of strongly correlated electron systems are compounds with

frustrated magnetic states. They include, for instance,

organic superconductors (based on BEDT-TTF molecules),
sodium cobaltites Na2CoOx etc. The quasi-two-dimensional

conductivity is caused due to each dimer of BEDT-TTF

molecules have one localized electron and efficiently forms

layers of triangular lattices, anions being located between

them [1]. Due to geometric frustration, staggered (Neel)
antiferromagnetic (AF) ordering can not emerge form

in lattices of this type, but other magnetic structures,

not typical for square- and cubic-lattice systems, stabilize.

Anderson has shown in [2] that has showed that the

ground state in a triangular lattice may be a quantum-

mechanical superposition of singlet pairs that inhabit the

lattice. This new state of matter called
”
spin liquid“

has unique properties, in particular, excited states can be

spinons (magnetic objects having a zero electric charge).

The data of experimental studies [3,4] shows the for-

mation of both a collinear AF and (incommensurate)
noncollinear magnetic configurations in triangular-lattice

systems. Theoretical calculations within the framework

of the Hubbard model, traditionally used to describe the

magnetism and superconductivity of strongly correlated

electron systems, also predict the formation of various

magnetic states.

Magnetic phase diagrams (MPD) of the Hubbard model

for an anisotropic triangular lattice in the unrestricted

Hartree−Fock method (HF) (both charge and spin fluc-

tuations with a certain weight coefficient are taken into

account) were obtained in the paper [5]. Collinear ferromag-

netic (FM) and stripe AF orderings, as well as complanar

and noncomplanar spiral phases were considered.The sta-

bilization of noncollinear magnetic states in a wide region

of model parameters, as well as magnetic phase separation

(PS) between them was shown.

Electron correlations were accounted using the slave

boson approximation (SB) of Kotliar and Ruckenstein for

the Hubbard model in the papers [6] and [7]. The

authors of the article [6] constructed of the Hubbard

model with account of AF, paramagnetic (PM) states

and the linearly polarized spin density wave. A first-

order phase transition between the AF and PM states

was found. MPDs of the Hubbard model are pre-

sented in [7], charge and sping orderings and elec-

tron transfer within the first three coordination spheres

being taken into account.. First- and second-order

phase transitions between different magnetic phases

were found. Both above-mentioned studies are pre-

sented in a limited range of model parameters and ig-

nore all possible spiral magnetic states with a variable

wave vector.

A separate line of research is related to study of the

metal−insulator transition (MIT), taking place at half-filling

when increasing the interaction parameter. Thereat, special

attention is paid to searching a region of stable non-magnetic

insulator, showing the possibility of spin liquid formation [8].
MIT was previously considered within the framework of
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Figure 1. a) Integrals of carryover in a triangular-lattice system, b) 120◦-structure, c) stripe ordering.

variational cluster approximation (VCA) [9,10], unrestricted

Hartree−Fock method (UHF) [5], renormalization group

functional (fRG) [11–13], cellular dynamical mean-field the-

ory (DMFT) [14], Monte−Carlo method [15], combination

of UHF and variational Monte−Carlo [16]. Within the

framework of the SB approximation, it was shown that in

the systems with triangular lattice, MIT occurs at a finite

value of U , in contrast to the case of a square lattice,

where perfect nesting of the Fermi surface leads to MIT

and AF ordering at arbitrarily small values of the Hubbard

parameter U [17]. Depending on chosen approach and

model parameters, both the magnetic MIT in the presence

of AF and various noncollinear magnetic states and the Mott

paramagnetic MIT have been obtained. The spin liquid

state was found to be stable for the values of the electron

transfer integral corresponding to BEDT-TTF compounds in

the weak correlation mode 4 . U/t . 10 [10].

Despite the fact that significant attention is being paid for

a long time to the study of magnetic properties of quasi-

two-dimensional triangular-lattice electron systems, the data

presented thus far in the literature is incomplete. In par-

ticular, the range of used model parameters or considered

magnetic phases is limited [6], or consideration of spiral

states with a random wave vector of the magnetic spiral

is ignored [5], etc. Up to now, no studies with successive

consideration of random wave vectors of a magnetic spiral

with simultaneous comparison of results of the HF and SB

methods have been carried out. Such a comparison

would make it possible to determine the role of electron

correlations in the formation of magnetic states in triangular-

lattice electron systems. At the same time, this manner was

successfully used to describe magnetic properties of cubic-

and square-lattice systems. The conditions of stabilization

of spiral magnetic states were previously studied in the SB

approximation for a Hubbard model in the paper [18], where

MPDs were obtained taking into account the possibility

of PS. This approach has been also successfully used to

describe magnetic states on a frustrated face-centered cubic

lattice [19].

2. Formalism

We consider the ground state of a single-band Hubbard

model on a triangular lattice. The model Hamiltonian in the

site representation has the form

H =
∑

j, j′,σ

t j, j′c
†
j,σ c j′,σ − µ

∑

j,σ

c†
j,σ c j,σ + U

∑

j

n j,↑n j,↓,

(1)

where t j, j′ is the integral of electron transfer from site j to

site j ′, c†
j,σ (c j,σ ) is the operation of creation (annihilation)

of an electron having the spin σ = (↑, ↓) on site j ,
U is the on-site value of electron’s Coulomb interaction,

n j,σ = c†
j,σ c j,σ is the operator of density of electrons having

the spin σ on site j , µ is the chemical potential. We

take into account the electron transfer within the first

and second coordination spheres with integrals −t and

t′, respectively, thereat, anisotropy was introduced in the

assigned direction x (tx 6= t) (see Fig. 1, a). Therefore, the

free electrons’ energy spectrum is as follows

εk = − 2tx cos kx − 4t cos
kx

2
cos

ky

√
3

2

+ 2t′
(
cos ky

√
3 + 2 cos

3kx

2
cos

ky

√
3

2

)
. (2)

We take into consideration the whole variety of spi-

ral magnetic states, thereat, the calculations show that

the following magnetic order types are implemented in

the ground state: 120◦-structure (see Fig. 1, b) with

Q = (0, 4π/3), collinear stripe ordering (see Fig. 1, c) with

Q = (0, 2π/
√
3), as well as spiral magnetic states with wave

vectors Q: (0, Q), (Q, 0) and (Q, 2π/
√
3).

The magnetic state on the site j can be described by the

following magnetic moment vector

m j = m(cosQR j , sinQR j), (3)

where m is the magnetic moment amplitude, R j is the

radius-vector of node j .
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The operation of conversion of the SU(2)-rotation at the

angle of QR j around axis z allows for treat the spiral

magnetic states as the FM order.

Â(R j ) = ei(nσ̂ )
QR j
2 = σ 0 cos

QR j

2
+ i(nσ̂ ) sin

QR j

2
, (4)

where R j is the radius-vector of site j , Q is the wave vector

of magnetic spiral, n is the unit vector, which direction

corresponds to the orientation of magnetic moment m on

the site, σ̂ 0 is the unit matrix, σ̂ = (σ x , σ̂ y , σ̂ z ) are SU(2)
rotation group generators (Pauli matrices).

2.1. Hartree−Fock method

After rotation and Fourier transformation in the HF ap-

proximation, the Hamiltonian operator (1) takes the form

of

HHFA =
∑

k,σ,σ ′

tσ,σ
′

k c†
k,σ ck,σ ′ − µ

∑

k,σ

c†
k,σ ck,σ

+
NU
4

(m2−n2)+
Un
2

∑

k,σ

c†
k,σ ck,σ −

Um
2

∑

k,σ,

σ c†
k,σ ck,σ ,

tσ,σ
′

k = es
kδσ,σ ′ + ea

kδσ,σ ′ ,

es
k =

ε0
k+ Q

2

+ ε0
k−

Q
2

2
,

ea
k =

ε0
k+ Q

2

− ε0
k−

Q
2

2
.

Here, N is the total number of particles in the system,

n =
〈∑

k,σ c†
k,σ ck,σ

〉
and m =

〈∑
k,σ σ c†

k,σ ck,σ

〉
are av-

erage values of electron density and magnetic moment,

respectively. System state is determined by minimization of

thermodynamic potential �HFA = 〈HHFA〉 for each configu-

ration of system parameters �HFA = argmin�HFA(µ,Q,U)
(〈. . .〉 means quantum-mechanical averaging by the ground

state of the Hamiltonian operator).

2.2. Method of slave bosons

We use the SB method in a saddle point approximation in

the Kotliar and Ruckenstein treatment [20], the formalism is

being described in detailed enough, e.g. in the paper [18].
Upon conversion of the rotation (4), SB operators e j , p j,σ

and d j are introduced; they correspond to an empty site, a

site occupied by one and two electrons j , and limitations

that exclude non-physical states are imposed:

e†j e j +
∑

σ

p†
j,σ p j,σ + d†

j d j = 1,

p†
j,σ p j,σ + d†

j d j = c†
j,σ c j,σ . (5)

A substitution that ensures coherence of bosonic and

fermionic fields is done in the Kotliar and Rickenstein

treatment: c j,σ → z j,σ f j,σ , where

z j,σ =
(
1− d†

j d j − p†
j,σ p j,σ

)−1/2

×
(
e†j p j,σ + p†

j,σ ′d j
)(
1− d†

j d j − p†
j,σ ′ p j,σ ′

)−1/2
. (6)

The term e†j p j,σ corresponds to a transition from a singly

occupied state into an empty state, while p†
j,σ ′d jσ — to

a transition from a twice occupied state to a single one.

The Hamiltonian in the introduced parametrization takes a

diagonal form in relation to boson operators

HSBA =
∑

j, j′,σ,σ ′

tσ,σ
′

j, j′ c†
j,σ c j′,σ ′ z †

j,σ z j′,σ ′ + U
∑

j

d†
j d j . (7)

In a static approximation, thermodynamic potential of a

grand canonical ensemble of the system is as follows

�SBA = η(e2 + p2
↑ + p2

↓ + d2 − 1)

+ Ud2 −
∑

σ

λσ (p2
σ + d2) + � f . (8)

Here, λσ and η are Lagrange multipliers, while � f is

the standard thermodynamic potential of a fermion system.

Minimization of thermodynamic potential in relation to the

wave vector Q makes it possible to determine the system’s

ground magnetic state at the chosen parameters (U/t, n)
and to construct MPD of the model.

3. Results

3.1. (U/t, n)-diagrams

The results are shown in Figs. 2 and 3, respectively.

MPD show that both collinear (stripe, FM) and spiral

(120◦-structure, phases with a variable wave vector (0, Q),
(Q, 0), and (Q, 2π/

√
3)) magnetic states are implemented

in the system. These diagrams were constructed without

taking into account the anisotropy of the electron transfer

integral and the electron transfer onto the next-nearest

neighbor sites.

A PS between different states is implemented in a wide

region of the diagram parameters. Chemical potential µ

is used as a base variable to consider the possibility

of PS, while number of electrons n is a parameter.

The first-order phase transition, accompanied by PS, is

characterized by a jump in the magnetic structure pa-

rameters Q and m: from (Q1, m1) to (Q2, m2). This

transition in variables (U, µ) is also characterized by

the jump 1(n) = |n(µ,Q1, m1) − n(µ,Q2, m2)|. If n lies

between n(µ,Q1, m1) and n(µ,Q2, m2), the system simul-

taneously has two spatially separated phases with densities

n(µ,Q1, m1) and n(µ,Q2, m2) that determine the left and

right boundaries of the PS region on the MPD [21].
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Figure 2. Magnetic phase diagram of the ground state of

the Hubbard model for a triangular lattice constructed in the

HF approximation. The thick lines denote the boundaries of the

second-order phase transitions, the thin lines separate the regions

of the homogenous phase and phase separation (shaded regions).
The thin dashed horizontal lines separate the phase separation

regions for different phase pairs. The thick dashed lines show the

first-order phase transitions. The abbreviations
”
PM“,

”
FM“ and

”
Stripe“ designate the regions of the paramagnetic, ferromagnetic

and stripe states, respectively. Regions of spiral spin ordering with

a variable wave vector are designated with the projections of the

magnetic spiral wave vector indicated in brackets.
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Figure 3. Magnetic phase diagram of the ground state of the Hub-

bard model for a triangular lattice plotted in the SB approximation.

The designations are the same as in Fig. 2.

There are a few differences between the diagrams for

the HF and SB methods. The use of the SB method

causes a suppression of the magnetic order by strong

electron correlations, and the region of ordered phases

narrows towards the half-filling line. For U/t > 5 there is a

significant decrease of the variety of spiral magnetic phases:

only the state (Q, 0) from the among them is implemented

in the n > 1, while at n < 1 the consideration of strong

electron correlations causes complete disappearance of the

stripe, spiral and FM states. At U/t < 5 the variety of

spiral states remains, but the diagram appearance changes

at the quantitative level: PM region extends significantly.

Moreover, in the SB method for values U/t > 5: PS regions

between paramagnetic and magnetic states appear (with the

120◦-state in the region of hole doping and with FM — in

the region of electron doping). For a diagram constructed

in the HF approximation, all transitions to a PM state at the

specified values of U/t are of the second-order and are not

accompanied with phase separation.

As U/t increases, the region of the FM state in the n > 1,

becomes larger. This with the Nagaoka theorem which

point out that the ground state of the Hubbard model on

a triangular lattice within U → ∞ in case of one-electron

doping (which is equivalent to hole doping at t > 0) is

saturated FM [22,23]. A similar result has been obtained

previously for another frustrated system — FCC lattice [19].
The investigation [5] deals with noncomplanar states,

however, as distinct from our paper, it does not take

into account the whole variety of spiral states. Moreover,

in the investigation mentioned above the nature of phase

transitions between magnetic states. The consideration

of different sets of magnetically ordered phases and a

difference in applied approaches lead to qualitative and

quantitative differences. A stripe state in the hole-doped

region of our diagram exists within 6 . U/t . 21, while

in the paper [5] it in the absence of anisotropy of the

electron transfer integral and appears only with increase

of the anisotropy value in the narrow region of the

parameter 10 . U/t . 15. The FM state on our diagrams

undergoes a phase separation with the 120◦-structure in

the hole doping region at U/t > 15. In the study [5],
phase separation in the same region with a conical spiral

structure, followed by a FM phase. At the same time, in

the interval of parameters 0.6 . n . 1 and 5 . U/t . 15

and 1.4 . n . 2.0 and 5 . U/t . 15 our results are in

agreement with the results given in the paper [5].

3.2. Metal−insulator transition

Figures 4 and 5 show the MPDs in coordi-

nates (t′/t, U/t) at n = 1, constructed using the

SB method, for two cases: 1) isotropic electron transfer t
with account of jumps to the next-nearest neighbor sites t′

and 2) with anisotropy of electron transfer (t, tx ; see

Fig. 1). The diagrams have regions of a metallic state

with paramagnetic and spiral magnetic ordering, as well

as a insulating state with stripe, spiral and 120◦-structure

ordering. Transitions between states with a permanent wave

vector and transition from a metallic state to a insulating

state are of first order. Second-order phase transitions

happens from a stripe magnetic state to a spiral insulating

state, as well as transitions from PM to a spiral metallic state.

In addition, both diagrams (inserts) show the transitions

from a PM-metallic state to a PM-insulating (PI). This is a

second-order phase transition, for the isotropic case it occurs

at U/t > 16, for an anisotropic state at U/t > 13. It can be
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SB approximation for n = 1, taking into account the electron
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lines show second-order phase transitions, thin ones — first-order

transitions. The region of
”
spiral metal“ corresponds to the wave

vector (Q, 2π/
√

3). The insert shows an identical phase diagram

plotted exclusive of magnetic states.
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Figure 5. Phase diagram of the Hubbard model in the slave

boson approximation in variables (tx/t, U/t) taking into account

the anisotropy of the electron transition integral along the x axis.

A vertical dashed line shows the value tx/t, corresponding to

BEDT-TTF organic superconductors. The other designations are

the same as in Fig. 4. The insert shows an identical phase diagram

plotted exclusive of magnetic states.

seen from the MPD that the magnetic states stabilize at

such high values of U/t, thus, the PI state is not the ground

state, which means that the spin liquid is not found in our

approach.

MIT on a triangular lattice has been previously considered

using the VCA method in the [9], which obtained a

significantly lower critical value of the interaction parame-

ter U/t ∼ 4, so that the authors claimed the formation of a

spin liquid state. A MPD of the Hubbard model in the co-

ordinates (U/t, tx/t) was plotted in [10,11] at n = 1 within

the framework of the VCA method and the renormalization

group method. There are obtained the state of a non-

magnetic insulator in the region of parameters 5 . U/t . 9

and 0.8 . n . 1. The disadvantage of mentioned studies is

the ignoring of the spin spiral state which is the ground state

in our calculations.

Diagram 5 has a vertical dashed line at the value

of tx/t = 0.83, corresponding to organic superconductors

based on BEDT-TTF [16]. Thus, we conclude that our

research predicts a first-order transition from a paramagnetic

metallic state to a magnetic insulating state with a spiral spin

structure upon an increase in the parameter U/t for such the

organic superconductors.

4. Conclusion

We have studied the conditions of formation of magnetic

states on an isotropic and anisotropic triangular lattice in

the Hubbard model. The HF and SB approximations

were used. We have found that, along with collinear

magnetic states (FM, stripe AF), spiral magnetic states with

wave vectors (0, Q), (Q, 0) and (Q, 2π/
√
3) also emerges

in triangular-lattice systems. Consideration of electron

correlations causes an extension of the PM state region

and reduces the variety of magnetic phases, which agrees

with the previously obtained results for the square and cubic

lattices [18]. The formation of a 120◦- structure in the and

the extension of the concentration region of PM existence

upon a decrease in the parameter U/t is typical both for

our research and for other authors’ studies. A considerable

difference of our approach is the accounting of the whole

variety of spiral magnetic states, as well as phase separation

regions that occupy the significant part of the diagrams. This

results, in particular, in a wide region of magnetic states

on metal−insulator transition diagrams, which displaces the

magnetic insulator region.
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