Golenitskii K. Yu.
1, Gutkin G. M.
11Ioffe Institute, St. Petersburg, Russia
Email: golenitski.k@mail.ioffe.ru
It is well known that an interface between media can support the propagation of surface electromagnetic waves. This work investigates a particular configuration involving two identical uniaxial crystals, where the surface polariton exhibits a singular wave characteristics similar to a Voigt wave. We derive complete existence conditions linking the polariton's propagation parameters to the crystals' anisotropy and optic axes orientation. Analytical expressions for the polariton field distributions have been obtained. It has been found that, for a given orientation of the optic axes and degree of anisotropy, up to four pairs of propagation directions are possible. Under certain conditions, the polariton can propagate either parallel or perpendicular to the crystal's optic axis, where it ceases to be singular. Keywords: surface polariton, surface electromagnetic wave, metamaterials, Dyakonov wave, Dyakonov surface wave, anisotropic medium.
- M.I. D'yakonov. Sov. Phys. JETP 67, 4, 714 (1988). [M.I. D'akonov. ZhETF 94, 4, 119 (1988). (in Russian).]
- O. Takayama, L. Crasovan, D. Artigas, L. Torner. Phys. Rev. Lett. 102, 4, 043903-1 (2009)
- O. Takayama, L.C. Crasovan, S.K. Johansen, D. Mihalache, D. Artigas, L. Torner. Electromagnetics 28, 3, 126 (2008)
- J.A. Polo, A. Lakhtakia. Laser Photonics Rev. 5, 2, 234 (2011)
- V.I. Alshits, V.N. Lyubimov. Phys. Solid State 44, 2, 386 (2002). [V.I. Al'shits, V.N. Lyubimov. FTT 44, 10, 1895 (2002). 2, 371 (2002). (in Russian).]
- L. Torner, J.P. Torres, C. Ojeda, D. Mihalache. J. Light. Technol. 13, 10, 2027 (1995)
- A.N. Furs, V.M. Galynsky, L.M. Barkovsky. Optics and Spectroscopy, 98, 3, 454 (2005)
- O. Takayama, D. Artigas, L. Torner. Nat. Nanotechnol. 9, 6, 419 (2014)
- D.A. Chermoshentsev, E.V. Anikin, S.A. Dyakov, N.A. Gippius. Nanophotonics 9, 16, 4785 (2020)
- D.A. Chermoshentsev, E.V. Anikin, I.M. Fradkin, M.S. Sidorenko, A.A. Dudnikova, A.S. Kalganov, M.F. Limonov, N.A. Gippius, S.A. Dyakov. Nanophotonics, 13, 16, 3005 (2024)
- D. Artigas, L. Torner. Phys. Rev. Lett. 94, 1, 013901 (2005)
- O. Takayama, A.A. Bogdanov, A.V. Lavrinenko. J. Phys. Condens. Matter 29, 46, 463001 (2017)
- K. Korzeb, M. Gajc, D. Pawlak. Opt. Express 23, 20, 25406 (2015)
- S. Jahani, Z. Jacob. Nat. Nanotechnol. 11, 1, 23 (2016)
- O. Takayama, E. Shkondin, A. Bodganov, M.E. Aryaee Panah, K. Golenitskii, P. Dmitriev, T. Repaan, R. Malureanu, P. Belov, F. Jensen, A.V. Lavrinenko. ACS Photonics 4, 11, 2899 (2017)
- M. Moradi. Sci. Rep. 13, 12353 (2023)
- F.N. Marchevskii, V.L. Strizhevskii, S.V. Strizhevskii. Sov. Phys. Solid State, 26, 901 (1984). [Marchevskii, V.L. Strizhevskii, S.V. Strizhevskii FTT 26, 5, 1501 (1984). (in Russian).]
- A. Lakhtakia, T.G. Mackay, C. Zhou. Eur. J. Phys. 42, 1, 015302-1 (2021)
- T.G. Mackay, C. Zhou, A. Lakhtakia. Proc. R. Soc. A 475, 2228, 20190317-1 (2019)
- L.D. Landau, E.M. Lifshitz. Elektrodinamika sploshnykh sred. Nauka, M. (1992). 664 s. ( 99). (in Russian)
- K.Yu. Golenitskii, N.S. Averkiev. Phys. Rev. A, 111, 6, 063508 (2025)
- A. Lakhtakia, T.G. Mackay. J. Opt. Soc. Am. B 37, 8, 2444 (2020)
- K.Yu. Golenitskii. Phys. Rev. B, 110, 3, 035301 (2024)
- E.E. Narimanov. Phys. Rev. A, 98, 1, 013818 (2018)
- A.P. Khapalyuk. Optics and Spectroscopy 12, 1, 106 (1962)
- N.S. Averkiev, M.I. Dyakonov. Optics and Spectroscopy 68, 3, 1118 (1990)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.