Structure and properties of glycine-modified iron oxide nanoparticles for biomedical applications
Kamzin A. S.1, Kozenkov I2, sviridova T.2, Rodionova V.2, Omelyanchik A2,3
1Ioffe Institute, St. Petersburg, Russia
2Immanuel Kant Baltic Federal University, Kaliningrad, Russia
3Department of Chemistry and Industrial Chemistry (DCIC), University of Genova, Genova, Italy
Email: askam@mail.ioffe.ru
Properties, a structure and sizes of the iron oxide particles produced by co-precipitation in the presence of glycine have been studied in a dependence on an amount of glycine in a reaction mixture from 0.0 mol, 0.1 mol, 0.3 mol and 0.6 mol. It was shown by data of Mossbauer spectroscopy that the synthesized particles are single-phase magnetite spinel ferrite nanoparticles (Fe3O4). It is shown by results of X-ray diffraction and Mossbauer studies that with an increase of the glycine concentration (0.1 mol, 0.3 mol and 0.6 mol) the particle sizes decrease from 11 nm, 10 nm and to 6 nm, respectively. The data of the Mossbauer studies of the particles indicate differences of the magnetic structures of a surface layer and a volume of the particles, which significantly affects the nanoparticle properties. An approach for creating special iron oxide nanoparticles has been developed for diagnostics and therapy (theranostics) of human diseases. Keywords: magnetic nanoparticles, functionalization, magnetic properties, magnetic structure.
- Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation. Ed-s. V.K. Sharma, R. Doong, H. Kim, R.S. Varma, D.D. Dionysiou. ACS Symposium Series; Volume American Chemical Society: Washington, DC, 2016. DOI: 10.1021/bk-2016-1238
- E.V. Tomina, B.V. Sladkopevtsev, N.A. Tien, V.Q. Mai. Inorganic Mater., 59, 13, 1363 (2023). DOI: 10.1134/S0020168523130010
- Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications. Ed. E.J. Chung, L. Leon, C. Rinaldi. Elsevier (2019). 440 p
- Hybrid Nanostructures for Cancer Theranostics. Ed. R.A. Bohara, N. Thorat. Elsevier Inc. (2019). 424 p
- F. Fabris, E. Lima, Jr.E. De Biasi, H.E. Troiani, M.V. Mansilla, T.E. Torres, R.F. Pacheco, M.R. Ibarra, G.F. Goya, R.D. Zysler, E.L. Winkler. Nanoscale 11, 3164 (2019)
- I.M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, C.V.V.M. Gopi. Magnetochemistry 5, 67 (2019). https://doi.org/10.3390/magnetochemistry5040067
- R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor. Ann. Surg. 146, 596 (1957)
- M.R. Ghazanfari, M. Kashefi, S.F. Shams, M.R. Jaafari. Biochemistry Research International.Volume 2016, Article ID 7840161
- B. Gleich, J. Weizenecker. Nature. 435, 1214 (2005). https://doi.org/10.1038/nature03808
- Gleich, J. Weizenecker, H. Timminger, C. Bontus, I. Schmale, J. Rahmer, J. Schmidt, J. Kanzenbach, J. Borgert, in Proc. ISMRM, 18, 1920 (2010)
- A.S. Kamzin, N. Dogan, L.S. Kamzina, A.V. Kopylov. FTT, 67, 2, 356 (2025). (in Russian). DOI: 10.61011/FTT.2025.02.59992.29-25
- N. Dogan, O.M. Dogan, M. Irfan, F. Ozel, A.S. Kamzin, V.G. Semenov, I.V. Buryanenko. J. Magn. Magn. Mater. 561, 169654 (2022). https://doi.org/10.1016/j.jmmm.2022.169654
- A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. Phys. Sol. State, 64, 10, 1550 (2022). DOI: 10.21883/PSS.2022.10.54249.391
- N. Dogan, G. Caliskan, M. Irfan. J. Mater. Sci.: Mater. Electron. 34, 390 (2023). https://doi.org/10.1007/s10854-022-09799-x
- W. Li, X. Jia, L. Yin, Z. Yang, H. Hui, J. Li, W. Huang, J. Tian, S. Zhang. iLIVER 1, 237 (2022). https://doi.org/10.1016/j.iliver.2022.10.003
- B.A. Zasonska, V.I. Patsula, R. Stoika, D. Horak. Surface-Modified Magnetic Nanoparticles for Cell Labeling. In Book "Process Advancement in Chemistry and Chemical Engineering Research". Ch. 17, p. 275. 2016 Academic Press. https://doi.org/10.1201/b19839
- S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong. Adv. Colloid Interface Sci. 281, 102165 (2020). https://doi.org/10.1016/j.cis.2020.102165
- A.S. Kamzin, N. Dogan, O.M. Dogan, V.G. Semenov. Phys. Solid State, 65, 8, 1373 (2023). DOI: 10.21883/PSS.2023.08.56587.127
- A.S. Kamzin, V.G. Semenov, L.S. Kamzina. Phys. Solid State, 66, 7, 1183 (2024). DOI: 10.61011/PSS.2024.07.58996.74
- A. Omelyanchik, A.S. Kamzin, A.A. Valiullin, V.G. Semenov, S.N. Vereshchagin, M. Volochaev, A. Dubrovskiy, I. Kozenkov, E. Dolan, D. Peddis, A. Sokolov, V. Rodionova. Colloids and Surfaces A: Physicochemical and Engineering Aspects 647, 129090 (2022). https://doi.org/10.1016/j.colsurfa.2022.129090
- S. M rup, M.F. Hansen, C. Frandsen. Magnetic Nanoparticles. 2-nd Ed. Elsevier Inc. (2018). DOI: 10.1016/B978-0-12-803581-8.11338-4
- A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 1933 (2020), doi.org/10.1134/S1063783420100157
- A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State 65, 3, 470 (2023). DOI: 10.21883/PSS.2023.03.55591.544
- D.N. Belysheva, O.Yu. Sinel'shchikova, N.G. Tyurnina, Z.G. Tyurnina, S.I. Sviridov, A.V. Tumarkin, M.V. Zlygostov, V.L. Ugolkov. FTT 61, 12, 2364 (2019). (in Russian). DOI: 10.21883/FTT.2019.12.48555.11ks
- E.V. Mashkovtseva, N.A. Rudnikova, V.S. Kopylova, Y.R. Nartsissov. Pharmacy \& Pharmacology. 12, 3, 198 (2024). DOI: 10.19163/2307-9266-2024-12-3-198-208
- C. Pereira, A.M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M.P. Fernandez-Garci a, A. Guedes, P.B. Tavares, J.M. Greneche, J.P. Araujo, C. Freire. Chem. Mater. 24, 1496 (2012), https://doi.org/10.1021/cm300301c
- E.V. Shelekhov, T.A. Sviridova. Met. Sci. Heat Treat. 42, 309 (2000), https://doi.org/10.1007/BF02471306
- M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 178 (2012), https://doi.org/10.1063/1.4759488
- T.J. Daou, G. Pourroy, S. Begin-Colin, J.M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey, G. Rogez. Chem. Mater. 18, 4399 (2006). https://doi.org/10.1021/cm060805r
- A. Demortiere, P. Panissod, B.P. Pichon, G. Pourroy, D. Guillon, B. Donnio, S. Begin-Colin. Nanoscale. 3, 225 (2011). DOI: 10.1039/c0nr00521e
- S.H. Gee, Y.K. Hong, D.W. Erickson, M.H. Park, J.C. Sur. J. Appl. Phys. 93, 7560 (2003). doi: 10.1063/1.1540177
- Z. Shaterabadi, G. Nabiyouni, G.F. Goya, M. Soleymani. Applied Phys. A128, 631 (2022). https://doi.org/10.1007/s00339-022-05675-x
- A. Omelyanchik, F.G. da Silva, G. Gomide, I. Kozenkov, J. Depeyrot, R. Aquino, A.F.C. Campos, D. Fiorani, D. Peddis, V. Rodionova, S. Jovanovic. J. Alloy. Compd. 883, 160779 (2021). https://doi.org/10.1016/j.jallcom.2021.160779
- A.G. Akopdzhanov, N.L. Shimanovskii, V.Yu. Naumenko, I.P. Suzdalev, V.K. Imshennik, Yu.V. Maksimov, S.V. Novichikhin, Russian J. Phys. Chem. B 8, 584 (2014)
- D.K. Kim, M. Mikhaylova, Y. Zhang, M. Muhammed. Chem. Mater. 15, 1617 (2003)
- Z. Surowiec, M. Budzynski, A. Miaskowski. Nukleonika 62, 183 (2017). doi: 10.1515/nuka-2017-0028
- J.B. Mamania, L.F. Gamarra, G.E. de S. Brito. Materials Research. 17, 542 (2014)
- P.B. Rathod, A.K. Pandey, S.S. Meena, A.A. Athawale. RSC Advan. 6, 21317 (2016). https://doi.org/10.1039/C6RA01543C
- G.M. da Costa, E. De Grave, R.E. Vandenberghe. Hyperfine Interact. 117, 207 (1998). https://doi.org/10.1023/A:1012691209853
- N. Joumaa, P. Toussay, M. Lansalot, A. Elaissari. J. Polymer Sci.: Part A: Polymer Chem. 46, 327 (2008). DOI: 10.1002/pola.22383
- G.F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales. J. Appl. Phys. 94, 5, 3520 (2003). DOI: 10.1063/1.1599959
- H. Topsoe, J.A. Dumesic, M. Boudart. J. de Phys. Col. C6, suppl N 12, 35, C6-411 (1974). http://dx.doi.org/10.1051/jphyscol:1974680
- V.V. Grecu, S. Constantinescu, M.N. Grecu, R. Olar, M. Badea, R. Turcu. Hyperfine Interact. 183, 205 (2008). DOI: 10.1007/s10751-008-9753-2
- V. Kuncser, G. Schinteie, R. Alexandrescu, I. Morjan, L. Vekas, G. Filoti. Magnetic Configuration and Relaxation in Iron Based Nano-Particles: A Mossbauer Approach. In: B\^arsan V., Aldea A. (eds) Trends in Nanophysics. Engineering Materials. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12070-1_13
- A.F.R. Rodriguez, T.P. Costa, R.A. Bini, F.S.E.D.V. Faria, R.B. Azevedo, M. Jafelicci Jr., J.A.H. Coaquira, M.A.R. Martinez, J.C. Mantilla, R.F.C. Marques, P.C. Morais. Physica B 521, 141 (2017). http://dx.doi.org/10.1016/j.physb.2017.06.043
- V.A.J. Silva, P.L. Andrade, A. Bustamante, L. de l.S. Valladares, M. Mejia, I.A. Souza, K.P.S. Cavalcanti, M.P.C. Silva, J.A. Aguiar. DOI: 10.1007/s10751-013-0875-9
- A. Mitra, J. Mohapatra, S.S. Meena, C.V. Tomy, M. Aslam. J. Phys. Chem. C 118, 19356 (2014). dx.doi.org/10.1021/jp501652e
- S.S. Pati, L.H. Singh, E.M. Guimaraes, J. Mantilla, J.A.H. Coaquira, A.C. Oliveira, V.K. Sharma, V.K. Garg. J. All. Comp. 684, 68 (2016). http://dx.doi.org/10.1016/j.jallcom.2016.05.160
- Ya. Smit, Kh. Vein. Ferrity. Izd-vo IL, M. (1962). 504 s. (in Russian)
- F.J. Berry, S. Skinner, M.F. Thomas, J. Phys. Condens. Matter 10, 215 (1998)
- C.E. Johnson, J.A. Johnson, H.Y. Hah, M. Cole, S. Gray, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. Hyperfine Interact. 237, 27 (2016). DOI: 10.1007/s10751-016-1277-6
- A.I. Nikiphorov, E.O. Lazareva, E.V. Edemskaya, V.G. Semenov, K.G. Gareev, D.V. Korolev. Kolloidnyi zhurnal. 86, 469 (2024). DOI: 10.31857/S0023291224040062
- F. van der Woude, G.A. Sawatzky, A.H. Morrish. Phys. Rev 167, 533 (1968)
- B.J. Evans, S.S. Hafner. J. Appl. Phys. 40, 1411 (1969)
- R.S. Hargrove, W. Kundig. Solid State Commun. 8, 303 (1970). https://doi.org/10.1016/0038-1098(70)90455-2
- M. Rubinstein, D.W. Forester. Solid State Commun. 9, 1675 (1971). https://doi.org/10.1016/0038-1098(71)90339-5
- J. Garci a, G. Subi as. J. Phys.: Condens. Matter 16, R145 (2004). DOI: 10.1088/0953-8984/16/7/R01
- I. Dezsi, Cs. Fetzer, A. Gombkoto, I. Szucs, J. Gubicza, T. Ungar. J. Appl. Phys. 103, 104312 (2008)
- R. Rezni cek, V. Chlan, H. v Stepankova, P. Novak, J. Zukrowski, A. Koz owski, Z. Kakol, Z. Tarnawski, J.M. Honig. Phys. Rev. B 96, 195124 (2017)
- M.S. Senn, J.P. Wright, J.P. Attfield. Nature (London) 481, 173 (2012)
- M. Mizoguchi, M. Inoue. J. Phys. Soc. Jpn. 70, 2333 (2001)
- E.J.W. Verwey, W. Haayman, F.C. Romeijin. J. Chem. Phys. 15, 18L (1947)
- A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. Phys. Solid State 64, 10, 1550 (2022). DOI: 10.21883/PSS.2022.10.54249.391
- D.F. Valezi, M.T. Piccinato, P.W.C. Sarvezuk, F.F. Ivashita, A. Paesano Jr., J. Varalda, D.H. Mosca, A. Urbano, C.L.B. Guedes, E. Di Mauro. Mater Chem Phys. 173, 179 (2016). doi:10.1016/j.matchemphys.2016.01.067
- L. Neel. J. Physique 15, 4, 225 (1954)
- A.S. Kamzin, L.A. Grigor'ev. JETP Lett. 57, 9, 557 (1993)
- A.S. Kamzin, L.A. Grigor'ev. ZETP 77, 4, 658 (1993)
- R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner. Phys. Rev. Lett. 77, 394 (1996)
- J.M.D. Coey. Phys. Rev. Lett. 27, 17, 1140 (1971). doi:10.1103/PhysRevLett.27.1140
- V. Sepelak, D. Baabe, F.J. Litterst, K.D. Becker. J. Appl. Phys. 88, 10, 5884 (2000). DOI: 10.1063/1.1316048
- F. Marquez-Linares, O.N.C. Uwakweh, N. Lopez, E. Chavez, R. Polanco, C. Morant, J.M. Sanz, Elizalde, C. Neira, S. Nieto, R. Roque-Malherbe. Journal of Solid State Chemistry 184, 655 (2011). doi:10.1016/j.jssc.2011.01.017
- I.S. Lyubutin, S.S. Starchikov, T.V. Bukreeva, I.A. Lysenko, S.N. Sulyanov, N.Y. Korotkov, S.S. Rumyantseva, I.V. Marchenko, K.O. Funtov, A.L. Vasiliev. Mater. Sci. Eng. C 45, 225 (2014). https://doi.org/10.1016/j.msec.2014.09.017
- I.S. Lyubutin, S.S. Starchikov, L. Chun-Rong, N.E. Gervits, N.Y. Korotkov, T.V. Bukreeva. Croat. Chem. Acta 88, 397 (2015). https://doi.org/10.5562/cca2739
- A.S. Kamzin, V.P. Rusakov, L.A. Grigoriev. Int. Conf. USSR. Proc. Part II, 271 (1988)
- A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. Lett. 6, 6, 417(1990)
- A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. 35, 7, 840 (1990)
- A.S. Kamzin, L.A. Grigor'ev. JETP Lett. 57, 9, 557 (1993)
- A.S. Kamzin, L.A. Grigor'ev. ZETP 77, 4, 658 (1993)
- A.S. Kamzin. JETP 89, 5, 891 (1999)
- A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. Phys. Solid State 41, 3, 433 (1999)
- A.S. Kamzin, V.L. Rozenbaum, L.P. Ol'khovik. JETP Lett. 67, 10, 843 (1998)
- A.S. Kamzin, L.P. Ol'khovik. FTT 41, 10, 1806 (1999). (in Russian)
- A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. JETP 84, 4, 788 (1997)
- F. Schaaf, U. Gonser. Hyperfine Interact. 57, 1--4, 2101 (1990)
- U. Gonzer, P. Schaaf, F. Aubertin. Hyperfine Interact. 66, 1--4, 95 (1991)
- A.E. Berkowitz, W.J. Schuele. J. Appl. Phys. 1959; 30: S134
- A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. Phys. Solid State 64, 10, 1550 (2022). DOI: 10.21883/PSS.2022.10.54249.391
- E.S. Vasil'eva, O.V. Tolochko, V.G. Semenov, V.S. Volodin, D. Kim. Tech. Phys. Letta. 33, 40 (2007). https://doi.org/10.1134/S1063785007010117
- A.F. Lehlooh, S.H. Mahmood. J. Magn. Magn. Mater. 151, 163 (1995), https://doi.org/10.1016/0304-8853(95)00385-1
- Z. Surowiec, M. Budzynski, K. Durak, G. Czernel. Nukleonika 62, 73 (2017). https://doi.org/10.1515/nuka-2017-0009
- P. Burnham, N. Dollahon, C.H. Li, A.J. Viescas, G.C. Papaefthymiou. J. Nanopart. 2013, 1 (2013), https://doi.org/10.1155/2013/181820
- R.R. Gabbasov, V.M. Cherepanov, M.A. Chuev, M.A. Polikarpov, V.Y. Panchenko. Hyperfine Inter. 226, 383 (2014), https://doi.org/10.1007/s10751-013-0960-0.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.