Physics of the Solid State
Volumes and Issues
Structure and properties of glycine-modified iron oxide nanoparticles for biomedical applications
Kamzin A. S.1, Kozenkov I2, sviridova T.2, Rodionova V.2, Omelyanchik A2,3
1Ioffe Institute, St. Petersburg, Russia
2Immanuel Kant Baltic Federal University, Kaliningrad, Russia
3Department of Chemistry and Industrial Chemistry (DCIC), University of Genova, Genova, Italy
Email: askam@mail.ioffe.ru

PDF
Properties, a structure and sizes of the iron oxide particles produced by co-precipitation in the presence of glycine have been studied in a dependence on an amount of glycine in a reaction mixture from 0.0 mol, 0.1 mol, 0.3 mol and 0.6 mol. It was shown by data of Mossbauer spectroscopy that the synthesized particles are single-phase magnetite spinel ferrite nanoparticles (Fe3O4). It is shown by results of X-ray diffraction and Mossbauer studies that with an increase of the glycine concentration (0.1 mol, 0.3 mol and 0.6 mol) the particle sizes decrease from 11 nm, 10 nm and to 6 nm, respectively. The data of the Mossbauer studies of the particles indicate differences of the magnetic structures of a surface layer and a volume of the particles, which significantly affects the nanoparticle properties. An approach for creating special iron oxide nanoparticles has been developed for diagnostics and therapy (theranostics) of human diseases. Keywords: magnetic nanoparticles, functionalization, magnetic properties, magnetic structure.
  1. Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation. Ed-s. V.K. Sharma, R. Doong, H. Kim, R.S. Varma, D.D. Dionysiou. ACS Symposium Series; Volume American Chemical Society: Washington, DC, 2016. DOI: 10.1021/bk-2016-1238
  2. E.V. Tomina, B.V. Sladkopevtsev, N.A. Tien, V.Q. Mai. Inorganic Mater., 59, 13, 1363 (2023). DOI: 10.1134/S0020168523130010
  3. Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications. Ed. E.J. Chung, L. Leon, C. Rinaldi. Elsevier (2019). 440 p
  4. Hybrid Nanostructures for Cancer Theranostics. Ed. R.A. Bohara, N. Thorat. Elsevier Inc. (2019). 424 p
  5. F. Fabris, E. Lima, Jr.E. De Biasi, H.E. Troiani, M.V. Mansilla, T.E. Torres, R.F. Pacheco, M.R. Ibarra, G.F. Goya, R.D. Zysler, E.L. Winkler. Nanoscale 11, 3164 (2019)
  6. I.M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, C.V.V.M. Gopi. Magnetochemistry 5, 67 (2019). https://doi.org/10.3390/magnetochemistry5040067
  7. R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor. Ann. Surg. 146, 596 (1957)
  8. M.R. Ghazanfari, M. Kashefi, S.F. Shams, M.R. Jaafari. Biochemistry Research International.Volume 2016, Article ID 7840161
  9. B. Gleich, J. Weizenecker. Nature. 435, 1214 (2005). https://doi.org/10.1038/nature03808
  10. Gleich, J. Weizenecker, H. Timminger, C. Bontus, I. Schmale, J. Rahmer, J. Schmidt, J. Kanzenbach, J. Borgert, in Proc. ISMRM, 18, 1920 (2010)
  11. A.S. Kamzin, N. Dogan, L.S. Kamzina, A.V. Kopylov. FTT, 67, 2, 356 (2025). (in Russian). DOI: 10.61011/FTT.2025.02.59992.29-25
  12. N. Dogan, O.M. Dogan, M. Irfan, F. Ozel, A.S. Kamzin, V.G. Semenov, I.V. Buryanenko. J. Magn. Magn. Mater. 561, 169654 (2022). https://doi.org/10.1016/j.jmmm.2022.169654
  13. A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. Phys. Sol. State, 64, 10, 1550 (2022). DOI: 10.21883/PSS.2022.10.54249.391
  14. N. Dogan, G. Caliskan, M. Irfan. J. Mater. Sci.: Mater. Electron. 34, 390 (2023). https://doi.org/10.1007/s10854-022-09799-x
  15. W. Li, X. Jia, L. Yin, Z. Yang, H. Hui, J. Li, W. Huang, J. Tian, S. Zhang. iLIVER 1, 237 (2022). https://doi.org/10.1016/j.iliver.2022.10.003
  16. B.A. Zasonska, V.I. Patsula, R. Stoika, D. Horak. Surface-Modified Magnetic Nanoparticles for Cell Labeling. In Book "Process Advancement in Chemistry and Chemical Engineering Research". Ch. 17, p. 275. 2016 Academic Press. https://doi.org/10.1201/b19839
  17. S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong. Adv. Colloid Interface Sci. 281, 102165 (2020). https://doi.org/10.1016/j.cis.2020.102165
  18. A.S. Kamzin, N. Dogan, O.M. Dogan, V.G. Semenov. Phys. Solid State, 65, 8, 1373 (2023). DOI: 10.21883/PSS.2023.08.56587.127
  19. A.S. Kamzin, V.G. Semenov, L.S. Kamzina. Phys. Solid State, 66, 7, 1183 (2024). DOI: 10.61011/PSS.2024.07.58996.74
  20. A. Omelyanchik, A.S. Kamzin, A.A. Valiullin, V.G. Semenov, S.N. Vereshchagin, M. Volochaev, A. Dubrovskiy, I. Kozenkov, E. Dolan, D. Peddis, A. Sokolov, V. Rodionova. Colloids and Surfaces A: Physicochemical and Engineering Aspects 647, 129090 (2022). https://doi.org/10.1016/j.colsurfa.2022.129090
  21. S. M rup, M.F. Hansen, C. Frandsen. Magnetic Nanoparticles. 2-nd Ed. Elsevier Inc. (2018). DOI: 10.1016/B978-0-12-803581-8.11338-4
  22. A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 1933 (2020), doi.org/10.1134/S1063783420100157
  23. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State 65, 3, 470 (2023). DOI: 10.21883/PSS.2023.03.55591.544
  24. D.N. Belysheva, O.Yu. Sinel'shchikova, N.G. Tyurnina, Z.G. Tyurnina, S.I. Sviridov, A.V. Tumarkin, M.V. Zlygostov, V.L. Ugolkov. FTT 61, 12, 2364 (2019). (in Russian). DOI: 10.21883/FTT.2019.12.48555.11ks
  25. E.V. Mashkovtseva, N.A. Rudnikova, V.S. Kopylova, Y.R. Nartsissov. Pharmacy \& Pharmacology. 12, 3, 198 (2024). DOI: 10.19163/2307-9266-2024-12-3-198-208
  26. C. Pereira, A.M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M.P. Fernandez-Garci a, A. Guedes, P.B. Tavares, J.M. Greneche, J.P. Araujo, C. Freire. Chem. Mater. 24, 1496 (2012), https://doi.org/10.1021/cm300301c
  27. E.V. Shelekhov, T.A. Sviridova. Met. Sci. Heat Treat. 42, 309 (2000), https://doi.org/10.1007/BF02471306
  28. M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 178 (2012), https://doi.org/10.1063/1.4759488
  29. T.J. Daou, G. Pourroy, S. Begin-Colin, J.M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey, G. Rogez. Chem. Mater. 18, 4399 (2006). https://doi.org/10.1021/cm060805r
  30. A. Demortiere, P. Panissod, B.P. Pichon, G. Pourroy, D. Guillon, B. Donnio, S. Begin-Colin. Nanoscale. 3, 225 (2011). DOI: 10.1039/c0nr00521e
  31. S.H. Gee, Y.K. Hong, D.W. Erickson, M.H. Park, J.C. Sur. J. Appl. Phys. 93, 7560 (2003). doi: 10.1063/1.1540177
  32. Z. Shaterabadi, G. Nabiyouni, G.F. Goya, M. Soleymani. Applied Phys. A128, 631 (2022). https://doi.org/10.1007/s00339-022-05675-x
  33. A. Omelyanchik, F.G. da Silva, G. Gomide, I. Kozenkov, J. Depeyrot, R. Aquino, A.F.C. Campos, D. Fiorani, D. Peddis, V. Rodionova, S. Jovanovic. J. Alloy. Compd. 883, 160779 (2021). https://doi.org/10.1016/j.jallcom.2021.160779
  34. A.G. Akopdzhanov, N.L. Shimanovskii, V.Yu. Naumenko, I.P. Suzdalev, V.K. Imshennik, Yu.V. Maksimov, S.V. Novichikhin, Russian J. Phys. Chem. B 8, 584 (2014)
  35. D.K. Kim, M. Mikhaylova, Y. Zhang, M. Muhammed. Chem. Mater. 15, 1617 (2003)
  36. Z. Surowiec, M. Budzynski, A. Miaskowski. Nukleonika 62, 183 (2017). doi: 10.1515/nuka-2017-0028
  37. J.B. Mamania, L.F. Gamarra, G.E. de S. Brito. Materials Research. 17, 542 (2014)
  38. P.B. Rathod, A.K. Pandey, S.S. Meena, A.A. Athawale. RSC Advan. 6, 21317 (2016). https://doi.org/10.1039/C6RA01543C
  39. G.M. da Costa, E. De Grave, R.E. Vandenberghe. Hyperfine Interact. 117, 207 (1998). https://doi.org/10.1023/A:1012691209853
  40. N. Joumaa, P. Toussay, M. Lansalot, A. Elaissari. J. Polymer Sci.: Part A: Polymer Chem. 46, 327 (2008). DOI: 10.1002/pola.22383
  41. G.F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales. J. Appl. Phys. 94, 5, 3520 (2003). DOI: 10.1063/1.1599959
  42. H. Topsoe, J.A. Dumesic, M. Boudart. J. de Phys. Col. C6, suppl N 12, 35, C6-411 (1974). http://dx.doi.org/10.1051/jphyscol:1974680
  43. V.V. Grecu, S. Constantinescu, M.N. Grecu, R. Olar, M. Badea, R. Turcu. Hyperfine Interact. 183, 205 (2008). DOI: 10.1007/s10751-008-9753-2
  44. V. Kuncser, G. Schinteie, R. Alexandrescu, I. Morjan, L. Vekas, G. Filoti. Magnetic Configuration and Relaxation in Iron Based Nano-Particles: A Mossbauer Approach. In: B\^arsan V., Aldea A. (eds) Trends in Nanophysics. Engineering Materials. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12070-1_13
  45. A.F.R. Rodriguez, T.P. Costa, R.A. Bini, F.S.E.D.V. Faria, R.B. Azevedo, M. Jafelicci Jr., J.A.H. Coaquira, M.A.R. Martinez, J.C. Mantilla, R.F.C. Marques, P.C. Morais. Physica B 521, 141 (2017). http://dx.doi.org/10.1016/j.physb.2017.06.043
  46. V.A.J. Silva, P.L. Andrade, A. Bustamante, L. de l.S. Valladares, M. Mejia, I.A. Souza, K.P.S. Cavalcanti, M.P.C. Silva, J.A. Aguiar. DOI: 10.1007/s10751-013-0875-9
  47. A. Mitra, J. Mohapatra, S.S. Meena, C.V. Tomy, M. Aslam. J. Phys. Chem. C 118, 19356 (2014). dx.doi.org/10.1021/jp501652e
  48. S.S. Pati, L.H. Singh, E.M. Guimaraes, J. Mantilla, J.A.H. Coaquira, A.C. Oliveira, V.K. Sharma, V.K. Garg. J. All. Comp. 684, 68 (2016). http://dx.doi.org/10.1016/j.jallcom.2016.05.160
  49. Ya. Smit, Kh. Vein. Ferrity. Izd-vo IL, M. (1962). 504 s. (in Russian)
  50. F.J. Berry, S. Skinner, M.F. Thomas, J. Phys. Condens. Matter 10, 215 (1998)
  51. C.E. Johnson, J.A. Johnson, H.Y. Hah, M. Cole, S. Gray, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. Hyperfine Interact. 237, 27 (2016). DOI: 10.1007/s10751-016-1277-6
  52. A.I. Nikiphorov, E.O. Lazareva, E.V. Edemskaya, V.G. Semenov, K.G. Gareev, D.V. Korolev. Kolloidnyi zhurnal. 86, 469 (2024). DOI: 10.31857/S0023291224040062
  53. F. van der Woude, G.A. Sawatzky, A.H. Morrish. Phys. Rev 167, 533 (1968)
  54. B.J. Evans, S.S. Hafner. J. Appl. Phys. 40, 1411 (1969)
  55. R.S. Hargrove, W. Kundig. Solid State Commun. 8, 303 (1970). https://doi.org/10.1016/0038-1098(70)90455-2
  56. M. Rubinstein, D.W. Forester. Solid State Commun. 9, 1675 (1971). https://doi.org/10.1016/0038-1098(71)90339-5
  57. J. Garci a, G. Subi as. J. Phys.: Condens. Matter 16, R145 (2004). DOI: 10.1088/0953-8984/16/7/R01
  58. I. Dezsi, Cs. Fetzer, A. Gombkoto, I. Szucs, J. Gubicza, T. Ungar. J. Appl. Phys. 103, 104312 (2008)
  59. R. Rezni cek, V. Chlan, H. v Stepankova, P. Novak, J. Zukrowski, A. Koz owski, Z. Kakol, Z. Tarnawski, J.M. Honig. Phys. Rev. B 96, 195124 (2017)
  60. M.S. Senn, J.P. Wright, J.P. Attfield. Nature (London) 481, 173 (2012)
  61. M. Mizoguchi, M. Inoue. J. Phys. Soc. Jpn. 70, 2333 (2001)
  62. E.J.W. Verwey, W. Haayman, F.C. Romeijin. J. Chem. Phys. 15, 18L (1947)
  63. A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. Phys. Solid State 64, 10, 1550 (2022). DOI: 10.21883/PSS.2022.10.54249.391
  64. D.F. Valezi, M.T. Piccinato, P.W.C. Sarvezuk, F.F. Ivashita, A. Paesano Jr., J. Varalda, D.H. Mosca, A. Urbano, C.L.B. Guedes, E. Di Mauro. Mater Chem Phys. 173, 179 (2016). doi:10.1016/j.matchemphys.2016.01.067
  65. L. Neel. J. Physique 15, 4, 225 (1954)
  66. A.S. Kamzin, L.A. Grigor'ev. JETP Lett. 57, 9, 557 (1993)
  67. A.S. Kamzin, L.A. Grigor'ev. ZETP 77, 4, 658 (1993)
  68. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner. Phys. Rev. Lett. 77, 394 (1996)
  69. J.M.D. Coey. Phys. Rev. Lett. 27, 17, 1140 (1971). doi:10.1103/PhysRevLett.27.1140
  70. V. Sepelak, D. Baabe, F.J. Litterst, K.D. Becker. J. Appl. Phys. 88, 10, 5884 (2000). DOI: 10.1063/1.1316048
  71. F. Marquez-Linares, O.N.C. Uwakweh, N. Lopez, E. Chavez, R. Polanco, C. Morant, J.M. Sanz, Elizalde, C. Neira, S. Nieto, R. Roque-Malherbe. Journal of Solid State Chemistry 184, 655 (2011). doi:10.1016/j.jssc.2011.01.017
  72. I.S. Lyubutin, S.S. Starchikov, T.V. Bukreeva, I.A. Lysenko, S.N. Sulyanov, N.Y. Korotkov, S.S. Rumyantseva, I.V. Marchenko, K.O. Funtov, A.L. Vasiliev. Mater. Sci. Eng. C 45, 225 (2014). https://doi.org/10.1016/j.msec.2014.09.017
  73. I.S. Lyubutin, S.S. Starchikov, L. Chun-Rong, N.E. Gervits, N.Y. Korotkov, T.V. Bukreeva. Croat. Chem. Acta 88, 397 (2015). https://doi.org/10.5562/cca2739
  74. A.S. Kamzin, V.P. Rusakov, L.A. Grigoriev. Int. Conf. USSR. Proc. Part II, 271 (1988)
  75. A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. Lett. 6, 6, 417(1990)
  76. A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. 35, 7, 840 (1990)
  77. A.S. Kamzin, L.A. Grigor'ev. JETP Lett. 57, 9, 557 (1993)
  78. A.S. Kamzin, L.A. Grigor'ev. ZETP 77, 4, 658 (1993)
  79. A.S. Kamzin. JETP 89, 5, 891 (1999)
  80. A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. Phys. Solid State 41, 3, 433 (1999)
  81. A.S. Kamzin, V.L. Rozenbaum, L.P. Ol'khovik. JETP Lett. 67, 10, 843 (1998)
  82. A.S. Kamzin, L.P. Ol'khovik. FTT 41, 10, 1806 (1999). (in Russian)
  83. A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. JETP 84, 4, 788 (1997)
  84. F. Schaaf, U. Gonser. Hyperfine Interact. 57, 1--4, 2101 (1990)
  85. U. Gonzer, P. Schaaf, F. Aubertin. Hyperfine Interact. 66, 1--4, 95 (1991)
  86. A.E. Berkowitz, W.J. Schuele. J. Appl. Phys. 1959; 30: S134
  87. A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. Phys. Solid State 64, 10, 1550 (2022). DOI: 10.21883/PSS.2022.10.54249.391
  88. E.S. Vasil'eva, O.V. Tolochko, V.G. Semenov, V.S. Volodin, D. Kim. Tech. Phys. Letta. 33, 40 (2007). https://doi.org/10.1134/S1063785007010117
  89. A.F. Lehlooh, S.H. Mahmood. J. Magn. Magn. Mater. 151, 163 (1995), https://doi.org/10.1016/0304-8853(95)00385-1
  90. Z. Surowiec, M. Budzynski, K. Durak, G. Czernel. Nukleonika 62, 73 (2017). https://doi.org/10.1515/nuka-2017-0009
  91. P. Burnham, N. Dollahon, C.H. Li, A.J. Viescas, G.C. Papaefthymiou. J. Nanopart. 2013, 1 (2013), https://doi.org/10.1155/2013/181820
  92. R.R. Gabbasov, V.M. Cherepanov, M.A. Chuev, M.A. Polikarpov, V.Y. Panchenko. Hyperfine Inter. 226, 383 (2014), https://doi.org/10.1007/s10751-013-0960-0.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru