Physics of the Solid State
Volumes and Issues
Negative magnetoresistance in high magnetic fields in a carbon nanostructure obtained by PECVD
Kharchanka A. A. 1, Fedotov А.K. 1, Fedotova J. A. 1
1Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus
Email: XaaTM@mail.ru, akf1942@gmail.com, julia@hep.by

PDF
The negative magnetoresistance effect (NME) is investigated in quasi-two-dimensional graphite layers on the surface of which the island-like nuclei of vertical graphene (VGN), containing a high density of paramagnetic defects (PMC) with uncompensated spins, were formed. A hypothesis is proposed for a possible reason for the NME observation, which is formally described by the theory of quantum corrections to the Drude conductivity with the magnetic field oriented perpendicular to the layer plane. The model is based on the assumption that the magnetic flux Phi is distributed non-uniformly along the plane of the C-layer due to the fact that the islands of the VGN phase contain a high density of PMC with uncompensated spins. Ferromagnetic regions are induced in the vicinity of the PMC clusters due to the parallel alignment of spins on the PMC due to the exchange interaction. It is assumed that the described redistribution of the magnetic flux Phi should lead to its concentration in the regions of the location of the islands-nuclei of the VGN phase and its significant weakening (rarefaction) between the islands. This explains the apparent observation of the OMR effect described by the theory of quantum corrections at high values of the external magnetic field B given by the superconducting solenoid (up to 8 T), although in reality most of the conducting C-layer is in a significantly weakened field.. Keywords: quantum corrections to conductivity, weak localization, negative magnetoresistive effect, vertical graphene, carbon nanostructure, magnetism in carbon structures.
  1. X. Zhang, Q. Xue, D. Zhu. Physics Letters A 320, 471 (2004)
  2. Y. Hishiyama, H. Irumano, Y. Kaburagi, Y. Soneda. Phys. Rev. B 63, 245406 (2001)
  3. Y. Kaburagi, Y. Hishiyama. Carbon 36, 1671 (1998)
  4. E. McCann, K. Kechedzhi, V.I. Fal'ko, H. Suzuura, T. Ando, B. Altshuler. Phys. Rev. Lett. 97, 146805 (2006)
  5. O. Mermer, G. Veeraraghavan, T. Francis, Y. Sheng, D. Nguyen, M. Wohlgenannt, A. Kohler, M.K. Al-Suti, M.S. Khan. Phys. Rev. B 72, 205202 (2005)
  6. A.S. Alexandrov, V.A. Dediu, V.V. Kabanov. Phys. Rev. Lett. 108, 186601 (2012)
  7. E. Andrade, F. Lopez-Uri as, G.G. Naumis. Phys. Rev. B 107, 235143 (2023)
  8. C. Zhao, Q. Huang, L. Valenta, K. Eimre, L. Yang, A.V. Yakutovich, W. Xu, J. Ma, X. Feng, M. Jur cek, R. Fasel, P. Ruffieux, C.A. Pignedoli. Phys. Rev. Lett. 132, 046201 (2024)
  9. R. Sakano, T. Hata, K. Motoyama, Y. Teratani, K. Tsutsumi, A. Oguri, T. Arakawa, M. Ferrier, R. Deblock, M. Eto, Kensuke Kobayashi. Phys. Rev. B 108, 205147 (2023)
  10. A.I. Romanenko, O.B. Anikeeva, A.V. Okotrub, L.G. Bulusheva, V.L. Kuznetsov, Yu.V. Butenko, A.L. Chuvilin, C. Dong, Y. Ni. FTT 44, 3, 468 (2002). (in Russian)
  11. R. Ur Rehman Sagar, X. Zhang, J. Wang, C. Xiong. J. Appl. Phys. 115, 123708 (2014)
  12. K. Kusakabe, M. Maruyama. Phys. Rev. B 67, 092406 (2003)
  13. P. Esquinazi, Handbook of magnetism and advanced magnetic materials, vol. 4 (2007)
  14. J. v Cervenka, C. Flipse. Phys. Rev. B 79, 195429 (2009)
  15. S. Ghosh, K. Ganesan, S. R. Polaki, T. Ravindran, N.G. Krishna, M. Kamruddin, A. Tyagi. J. Raman Spectrosc. 45, 642 (2014)
  16. S.K. Behura, I. Mukhopadhyay, A. Hirose, Q. Yang, O. Jani. Phys. Status Solidi A 210, 1817 (2013)
  17. J. Zhao, M. Shaygan, J. Eckert, M. Meyyappan, M.H. Rummeli. Nano Lett. 14, 3064 (2014)
  18. E. Rajackaite, D. Peckus, R. Gudaitis, M. Andruleviv cius, T. Tamuleviv cius, D. Volyniuk, v S. Mev skinis, S. Tamuleviv cius. Surface and Coatings Technology 395, 125887 (2020)
  19. E. Rajackaite, D. Peckus, R. Gudaitis, T. Tamuleviv cius, S. Mev skinis, S. Tamuleviv cius. Surfaces and Interfaces 27, 101529 (2021)
  20. A.A. Maksimenko, E. Rayatskaite, Sh. Meshkinis, T. Tamulevichyus, S. Tamulevichyus, A.A. Kharchenko, A.K. Fedotov, Yu.A. Fedotova. Zhurnal BGU. Fizika 3, 89 (2020). (in Russian)
  21. L. Zhang, Z. Sun, J.L. Qi, J. Shi, T. Hao, J. Feng. Carbon 103, 339 (2016)
  22. S. Ghosh, K. Ganesan, S. Polaki, T. Mathews, S. Dhara, M. Kamruddin, A. Tyagi. Appl. Surf. Sci. 349, 576 (2015)
  23. Yu.A. Fedotova, A.A. Kharchenko, A.K. Fedotov, M.V. Chichkov, V.D. Malinkovich, A.O. Konakov, S.A. Vorob'eva, Yu.V. Kasyuk, V.E. Gumennik, M. Kula, M. Mitura-Nowak, A.A. Maksimenko, J. Przewoznik, Cz. Kapusta. FTT 62, 2, 368 (2020). (in Russian)
  24. A. Fedotov, V. Shepelevich, I. Svito, V. Sivakov. Phys. Rev. B 97, 075204 (2018)
  25. T.A. Polyanskaya, Yu.V. Shmartsev. FTP 23, 1, 3 (1989). (in Russian)
  26. V. Pudalov. Proceedings of the International School of Physics "Enrico Fermi" 157, 335 (2004)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru