Boiko Y. M.
1, Borisov A. K.
1, Grankin D. V.
2, Ivankova E. M.
3, Marikhin V. A.
1, Myasnikova L. P.
1, Preobrazhenskii V. L.
4, Radovanova E.I
1, Siklizkii V. I.
1, Shidlovskii T. D.
1, Tsygankov M. M.
11Ioffe Institute, St. Petersburg, Russia
2Gwint Consulting Inc., Toronto, Canada
3Branch of Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Centre «Kurchatov Institute» – Institute of Macromolecular Compounds, St.-Petersburg, Russia
4Connector Optics LLC, St. Petersburg, Russia
Email: ivelen@mail.ru, Liuba.Myasnikova@mail.ioffe.ru
The possibility of obtaining mechanically coherent films (precursors for subsequent strain hardening) from reactor powders of ultra-high molecular weight polyethylene (UHMWPE) synthesized on supported modified Ziegler-Natta and metallocene catalysts was studied. The compaction pressure at room temperature, as well as the temperature and sintering time of the compacts were varied. A comparative study of the fine structure of powders, their thermodynamical properties, molecular mobility in near-surface nanolayers, and their changes during monolithization under various temperature-time conditions was conducted. It is shown that in the optimal mode, UHMWPE powders synthesized on a Ziegler-Natta catalyst are better compacted and sintered than UHMWPE powders synthesized on a metallocene catalyst. Structural and kinetic criteria for the suitability of reactor powders for monolithization are discussed. Keywords: reactor powder, ultra-high molecular weight polyethylene, compaction/sintering, plasma-induced thermoluminescence, differential scanning calorimetry, scanning electron microscopy, precursors for strain hardening.
- Yu.I. Matveev, A.A. Askadskii. VMS B 36, 10, 1750 (1994). (in Russian)
- P.J. Lemstra, P. Smith. Brit. Poly. J. 12, 4, 212 (1980). https://doi.org/10.1002/pi.4980120415
- B.P. Rotzinger, H.D. Chanzy, P. Smith. Polymer 30, 10, 1814 (1989). https://doi.org/10.1016/0032-3861(89)90350-9
- H.D. Chanzy, B.P. Rotzinger, P. Smith. US Patent 4769433 (1988)
- S. Rastogi, K. Sharma, R. Duchateau, G.J.M. Gruter, D.R. Lippits. US Patent 0142521 (2006)
- S. Rastogi, Y. Yao, S. Ronca, J. Bos, J. van der Eem. Macromolecules 44, 14, 5558 (2011). https://pubs.acs.org/doi/10.1021/ma200667m
- A.N. Ozerin, S.S. Ivanchev, S.N. Chvalun, V.A. Aulov, N.S. Ivancheva, N.F. Bakeev. Polym. Sci. Ser. A 54, 12, 950 (2012)
- A.N. Ozerin, E.K. Golubeva, S.S. Ivanchev, V.A. Aulov, A.S. Kechek'yan, T.S. Kurkin, E.M. Ivan'kova, N.Yu. Adonin. VMS A 64, 2, 83 (2022). (in Russian)
- L.P. Myasnikova, V.A. Marikhin, A.K. Gladkov, O.Yu. Solov'eva, E.I. Radovanova, Yu.M. Boiko, E.M. Egorov. J. Phys.: Conf. Ser. 1697, 1, 012251 (2020). https://doi.org/10.1088/1742-6596/1697/1/012251
- V.F. Drobot'ko, L.P. Myasnikova, A.P. Borzenko, V.A. Marikhin, Yu.M. Boiko, V.M. Tkachenko, I.M. Makmak, N.E. Pis'menova, E.I. Radovanova, S.A. Terekhov. FTVD 33, 2, 86 (2023). (in Russian)
- M. Dermeneva, E. Ivan'kova, V. Marikhin, L. Myasnikova, M. Yagovkina, E. Radovanova. J. Phys.: Conf. Ser. 1038, 1, 012058 (2018). https://doi.org/10.1088/1742-6596/1038/1/012058
- T. Kanamoto, A. Tsuruta, K. Kanaka, M. Takeda, R.S. Porter. Polym. J. 15, 4, 327 (1983). https://doi.org/10.1295/polymj.15.327
- M.B. Konstantinopol'skaya, S.N. Chvalun, V.I. Selikhova, A.N. Ozerin, Yu.A. Zubov, N.F. Bakeev. VMS B 27, 7, 538 (1985). (in Russian)
- A.S. Maxwell, A.P. Unwin, I.M. Ward. Polymer 37, 15, 3293 (1996). https://doi.org/10.1016/0032-3861(96)88475-8
- A.A. Kalachev, N.M. Blashenkov, Yu.P. Ivanov, A.L. Myasnikov, L.P. Myasnikova, V.L. Koval'skii. Patent RF N 2112650 (2003). (in Russian)
- L.P. Myasnikova, N.M. Blashenkov, Yu.M. Boiko, E.M. Ivan'kova, A.A. Kalachev, D.V. Lebedev, V.A. Marikhin, E.I. Radovanova. Macromol. Symp. 242, 182 (2006). https://doi.org/10.1002/masy.200651026
- P. Smith, H.D. Chanzy, B.P. Rotzinger. Polymer Commun. 26, 9, 258 (1985)
- O.F. Kireenko, V.A. Marikhin, L.P. Myasnikova. VMS A 1, 1, 30 (1981). (in Russian)
- I.V. Kuleshov, V.G. Nikol'skii. Radiotermolyuminestsentsiya polimerov. Khimiya, M. (1991). 123 s. (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.