Sokolov A. E.
1,2, Edelman I.S.
1, Ivanova O. S.
1,2, Ivantsov R. D.
1, Petrov D. A.
1, Knyazev Yu. V.
1,2, Thakur A.
3, Thakur P.
31Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
3Amity University Haryana, Gurugram, Haryana, India
Email: alexeys@iph.krasn.ru, ise@iph.krasn.ru, osi@iph.krasn.ru, ird@iph.krasn.ru, irbiz@iph.krasn.ru, yuk@iph.krasn.ru, atulphysics@gmail.com, pthakur@ggn.amity.edu
Mixed Zn-Co and Mg-Co ferrite nanoparticles (NPs) with the formulas Zn1-xCoxFe2O4 and Mg1-xCoxFe2O4 where x was equal to 0.0, 0.2, and 0.4 were synthesized via auto- combustion method using citrate precursor as a catalyst that initiates a thermal reaction. X-ray diffraction patterns showed that for all compositions, NPs are nanocrystals of the Fd-3m space group. 57Fe Mossbauer spectroscopy showed all Co2+ ions in Mg-Co ferrite to occupy the octahedral positions only and Fe3+ ions to be distributed approximately equally between octahedral and tetrahedral positions. In Zn-Co ferrite NPs, Co2+ ions are distributed approximately evenly between these interstitial positions, and Fe3+ ions are localized preferably in octahedral positions. Magnetic measurements demonstrate large values of saturation magnetization, Ms, in both cases but high coercivity, Hc, in the first case and low coercivity in the second one. Spectra of the Faraday effect and magnetic circular dichroism were obtained for such mixed ferrites for the first time and their dependence on the nature of the non-magnetic ion and cobalt concentration was analyzed. In particular, the analysis carried out allowed us to associate unambiguously the strong peak in the near infrared region with the spin allowed crystal field electron transition in Co2+ ions situated in octahedral positions Keywords: nanostructure, magnetic properties, Mossbauer effect, magnetic circular dichroism, Faraday effect.
- A.D. Buckingham, P.J. Stephens. Annu. Rev. Phys. Chem. 17, 399 (1966)
- N.V. Starostin, P.P. Feofilov. UFN 97, 621 (1969). (in Russian)
- P.N. Schatz, A.J. McCaffery. Q. Rev. Chem. Soc. 23, 4, 552 (1969)
- G.S. Krinchik, M.V. Chetkin. Sov. Phys. Uspekhi 12, 3, 307 (1969)
- A.K. Zvezdin, V.A. Kotov. Modern Magnetooptics and Magnetooptical Materials. Taylor \& Francis Group, New York (1997). 404 p
- T. Haider. Int. J. Electromag. Appl. 7, 1, 17 (2017)
- C. Rizal, H. Shimizu, J.R. Mejia-Salazar. Magnetochemistry 8, 9, 94 (2022)
- A.E. Rogachev, P.M. Vetoshko, N.A. Gusev, M.A. Kozhaev, A.R. Prokopov, V.V. Popov, D.V. Dodonov, A.G. Shumilov, A.N. Shaposhnikov, V.N. Berzhansky, A.K. Zvezdin, V.I. Belotelov. Appl. Phys. Lett. 109, 16, 162403 (2016)
- D. Vojna, O. Slezak, A. Lucianetti, T. Mocek. Appl. Sci. 9, 15, 3160 (2019)
- A. Abramovici, W.E. Althouse, R.W.P. Drever, Y. Gursel, S. Kawamura, F.J. Raab, D. Shoemaker, L. Sievers, R.E. Spero, K.S. Thorne, R.E. Vogt, R. Weiss, S.E. Whitcomb, M.E. Zucker. Sci. 256, 5055, 325 (1992)
- W.F.J. Fontijn, P.J. van der Zaag, R. Metselaar. J. Appl. Phys. 83, 11, 6765 (1998)
- W.F.J. Fontijn, P.J. van der Zaag, M.A.C. Devillers, V.A.M. Brabers, R. Metselaar. Phys. Rev. B 56, 9, 5432 (1997).
- W.F.J. Fontijn, P.J. van der Zaag, L.F. Feiner, R. Metselaar, M.A.C. Devillers. J. Appl. Phys. 85, 8, 5100 (1999)
- G.S. Krinchik, K.M. Mukimov, Sh.M. Sharipov, A.P. Khrebtov, E.M. Speranskaya. JETP 49, 6, 1074 (1979)
- G.S. Krinchik, A.P. Khrebtov, A.A. Askochenskii, E.M. Speranskaya, S.A. Belyaev. JETP 45, 2, 366 (1977)
- L. Stichauer, G. Gavoille, Z. Simsa. J. Appl. Phys. 79, 7, 3645 (1996)
- K.J. Kim, H.S. Lee, M.H. Lee, S.H. Lee. J. Appl. Phys. 91, 12, 9974 (2002)
- F.J. Kahn, P.S. Pershan, J.P. Remeika. Phys. Rev. 186, 3, 891 (1969)
- G.B. Scott, D.E. Lacklison, H.I. Ralph, J.L. Page. Phys. Rev. B 12, 7, 2562 (1975)
- P.E. Petrov, P.O. Kapralov, G.A. Knyazev, A.N. Kuzmichev, P.M. Vetoshko, Yu.M. Bunkov, V.I. Belotelov. Opt. Express 30, 2, 1737 (2022)
- M. Levy, O.V. Borovkova, C. Sheidler, B. Blasiola, D. Karki, F. Jomard, M.A. Kozhaev, E. Popova, N. Keller, V.I. Belotelov. Optica 6, 5, 642 (2019)
- A. Thakur, I. Edelman, D. Petrov, S. Ovchinnikov, P. Thakur, S. Zharkov, Y. Knyazev, A. Sukhachev. J. Mater. Res. 39, 21, 3029 (2024)
- G. Marquez, V. Sagredo, R. Guillen-Guillen, G. Attolini, F. Bolzoni. Revista Mexicana de Fisica 66, 3, 251 (2020)
- T.A.S. Ferreira, J.C. Waerenborgh, M.H.R.M. Mendonca, M.R. Nunes, F.M. Costa. Solid State Sci. 5, 2, 383 (2003)
- Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany (2008)
- R. Ivantsov, N. Evsevskaya, S. Saikova, E. Linok, G. Yurkin, I. Edelman. Mater. Sci. Eng. B 226, 171 (2017)
- D. Chahar, S. Taneja, P. Thakur, A. Thakur. J. Alloys Compd 843, 155681 (2020)
- O.S. Ivanova, I.S. Edelman, S.G. Ovchinnikov, A. Thakur, P. Thakur, A.L. Sukhachev, Y.V. Knyazev, R.D. Ivantsov, M.S. Molokeev. JETP Lett. 119, 2, 104 (2024)
- S. Sarmah, K.P. Patra, P.K. Maji, S. Ravi, T. Bora. Ceram. Int. 49, |it 1, 1444 (2023)
- M. Al-Maashani, A.M. Gismelseed, K.A.M. Khalaf, A.A. Yousif, A.D. Al-Rawas, H.M. Widatallah, M.E. Elzain. Hyperfine Interactions 239, 1, 15 (2018)
- H.B. Desai, A. Kumar, A.R. Tanna. Eur. Chem. Bull. 10, 3, 186 (2021)
- W.S. Mohamed, M. Alzaid, M.S.M. Abdelbaky, Z. Amghouz, S. Garcia-Granda, A.M. Abu-Dief. Nanomater. 9, 11, 1602 (2019)
- S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, S.J. Shukla, K.M. Jadhav. Int. J. Modern Phys. B 23, 30, 5629 (2009)
- L.M. Corliss, J M. Hastings, F.G. Brockman. Phys. Rev. 90, 6, 1013 (1953).
- V. vSepelak, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, I. Bergmann, K.D. Becker. Chem. Mater. 18, 13, 3057 (2006)
- A.V. Malakhovsky, I.S. Edelman. Physica Status Solidi B 74, 2, K145 (1976)
- W.D. Martens, W.L. Peeters, H.M. Noort, M. Erman. J. Phys. Chem. Solids 46, 4, 411 (1985)
- B.S. Holinsworth, N.C. Harms, S. Fan, D. Mazumdar, A. Gupta, S.A. McGill, J.L. Musfeldt. APL Mater. 6, 6, 066110 (2018)
- D.T. Sviridov, R.K. Sviridova, Yu.F. Smirnov. Opticheskie spektry ionov perekhodnykh metallov v kristallakh. Nauka, M. (1976). 266 s. (in Russian)
- K. Ravindranadh, K.D.V. Prasad, M.C. Rao. AIMS Mater. Sci. 3, 3, 796 (2016)
- M.N. Taran, G.R. Rossman. Am. Mineral. 86, 7, 889 (2001)
- V. Zviagin, P. Richter, T. B"ontgen, M. Lorenz, M. Ziese, D.R.T. Zahn, G. Salvan, M. Grundmann, R. Schmidt-Grund. Physica Status Solidi B 253, 3, 429 (2016).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.