The effect of introducing monoethanolammonium cation into hybrid halide perovskite films on the nature of their low-temperature conductivity
Ovezov M. K.1, Ryabko A. A.1, Aleshin P. A.1, Lodygin A. N.1, Vrublevskiy I. A.2, Moshnikov V. A.3, Aleshin A. N.1
1Ioffe Institute, St. Petersburg, Russia
2Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
3
Email: strontiumx94@gmail.com
Hybrid organo-inorganic halide perovskites are promising materials for optoelectronic devices. In this work, it was shown that the introduction of the monoethanolammonium cation MEA into the hybrid perovskite MAPbI3 leads to a change in the characteristic absorption peaks of FTIR spectroscopy, indicating chemical interaction of the monoethanolammonium cation with the hybrid perovskite. An increase in the proportion of the monoethanolammonium cation in the hybrid perovskite leads to an increase in the absorption edge energy of the perovskite and a significant change in the shape of the spectra, as well as to a change in the band diagram. Low-temperature conductivity (in the range of 100-200 K) is characterized by suppression of the ionic component, which is also accompanied by a significant decrease in the hysteresis of the current-voltage characteristics of the films. The results of measuring the temperature dependence of the current-voltage characteristics showed that the use of the monoethanolammonium cation in the hybrid perovskite leads to an increase in the activation energy of ionic conductivity and a decrease in hysteresis, which helps to reduce the degradation of devices based on hybrid perovskites. Keywords: hybrid halide perovskites, monoethanolammonium cations, solar cells, low-temperature conductivity, hysteresis, I-V characteristics.
- S. Khatoon, V. Chakravorty, J. Singh, R.B. Singh, M.S. Hasnain, S.M.M. Hasnain. Materials Science for Energy Technologies, 6, 437--459 (2023). https://doi.org/10.1016/j.mset.2023.04.007
- F. Khan, B.D. Rezgui, M.T. Khan, F.A. Al-Sulaiman. Renewable and Sustainable Energy Reviews, 165, 112553 (2022). https://doi.org/10.1016/j.rser.2022.112553
- X. Zhang, M.E. Turiansky, J.-X. Shen, C.G.V. d. Walle. Journal of Applied Physics, 131, 9 (2022). https://doi.org/10.1063/5.0083686
- B.G. Krishna, D.S. Ghosh, S. Tiwari. Solar Energy, 224, 1369--1395 (2021). https://doi.org/10.1016/j.solener.2021.07.002
- M. Ahmadi, T. Wu, B. Hu. Advanced Materials, 29, 41 (2017). https://doi.org/10.1002/adma.201605242
- Y. C. Kim, K.H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo, Y.S. Choi, I.T. Han, S.Y. Lee, N.-G. Park. Nature, 550, 7674, 87--91 (2017). https://doi.org/10.1038/nature24032
- X. Zhao, H. Xu, Z. Wang, Y. Lin, Y. Liu. InfoMat, 1, 2, 183--210 (2019). https://doi.org/10.1002/inf2.12012
- X. Fan. Materials Today Sustainability, 24, 100603 (2023). https://doi.org/10.1016/j.mtsust.2023.100603
- B. Zhang, Y.-j. Liao, L. Tong, Y. Yang, X. Wang. Physical Chemistry Chemical Physics, 22, 15, 7778--7786 (2020). https://doi.org/10.1039/d0cp00866d
- T. Zhu, M.-X. Li, C. Zhang, Y. Dong, F. Sun, D. Li, F. You, Z. He, C. Liang. Materials Today Chemistry, 39, 102167 (2024). https://doi.org/10.1016/j.mtchem.2024.102167
- Z. Shen, Q. Han, X. Luo, Y. Shen, Y. Wang, Y. Yuan, Y. Zhang, Y. Yang, L. Han. Nature Photonics, 18, 5, 450--457 (2024). https://doi.org/10.1038/s41566-024-01383-5
- W. Feng, Y. Tan, M. Yang, Y. Jiang, B.-X. Lei, L.P. Wang, W.-Q. Wu. Chem, 8, 351--383 (2022). https://doi.org/10.1016/j.chempr.2021.11.010
- R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah, J. Liu, G.T. Harrison, M.I. Nugraha, M.K. Eswaran, M. Babics et al. Science, 376, 73--77 (2022). https://doi.org/10.1126/science.abm5784
- T.L. Leung, I. Ahmad, A.A. Syed, A.M.C. Ng, J. Popovic, W. Chen. Communications Materials, 3, 63 (2022). https://doi.org/10.1038/s43246-022-00285-9
- N. Mercier, S. Poiroux, A. Riou, P. Batail. Inorganic Chemistry, 43, 26, 8361--8366 (2004). https://doi.org/10.1021/ic048814u
- B. Cheng, T.-Y. Li, P. Maity, P.-C. Wei, D. Nordlund, K.-T. Ho, D.-H. Lien, C.-H. Lin, R.-Z. Liang, X. Miao, O.F. Mohammed, J.-H. He. Communications Physics, 1, 1 (2018). https://doi.org/10.1038/s42005-018-0082-8
- A. Leblanc, N. Mercier, M. Allain, J. Dittmer, V. Fernandez, T. Pauporte. Angewandte Chemie International Edition, 56, 50, 16067--16072 (2017). https://doi.org/10.1002/anie.201710021
- C.C. Tsai, Y.-P. Lin, M.K. Pola, S. Narra, E. Jokar, Y.-W. Yang, E.W.-G. Diau. ACS Energy Letters, 3, 2077--2085 (2018). https://doi.org/10.1021/acsenergylett.8b01046
- A. Ryabko, M. Ovezov, A. Tuchkovsky, O. Korepanov, A. Maximov, A. Komolov, E. Lazneva, E. Muratova, I. Vrublevsky, A. Aleshin et al. Nanomaterials, 15, 494 (2025). https://doi.org/10.3390/nano15070494
- A. Rajagopal, K. Yao, A.K.-Y. Jen. Advanced Materials, 30, 1800455 (2018). https://doi.org/10.1002/adma.201800455
- G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F.D. Angelis, M. Gratzel et al. Nature Communications, 8, 15684 (2017). https://doi.org/10.1038/ncomms15684
- M. Garcia-Batlle, S. Deumel, J.E. Huerdler, S.F. Tedde, O. Almora, G. Garcia-Belmonte. Advanced Photonics Research, 3, 12 (2022). https://doi.org/10.1002/adpr.202200136
- M.A. Perez-Osorio, R.L. Milot, M.R. Filip, J.B. Patel, L.M. Herz, M.B. Johnston, F. Giustino. The Journal of Physical Chemistry C, 119, 46, 25703--25718 (2015). https://doi.org/10.1021/acs.jpcc.5b07432
- J. Sun, B. An, K. Zhang, M. Xu, Z. Wu, C. Ma, W. Li, S. Liu. Journal of Materials Chemistry A, 9, 43, 24650--24660 (2021). https://doi.org/10.1039/d1ta07498a
- P. Jackson, K. Robinson, G. Puxty, M.I. Attalla. Energy Procedia, 1, 1, 985--994 (2009). https://doi.org/10.1016/j.egypro.2009.01.131
- S.A. Legkov, G.N. Bondarenko, J.V. Kostina, E.G. Novitsky, S.D. Bazhenov, A.V. Volkov, V.V. Volkov. Molecules, 28, 403 (2023). https://doi.org/10.3390/molecules28010403
- A.M.A. Leguy, P. Azarhoosh, M.I. Alonso, M. Campoy-Quiles, O.J. Weber, J. Yao, D. Bryant, M.T. Weller, J. Nelson, A. Walsh, M.V. Schilfgaarde, P.R.F. Barnes. Nanoscale, 8, 6317--6327 (2016). https://doi.org/10.1039/c5nr05435d
- X. Li, W. Zhang, Y.-C. Wang, W. Zhang, H.-Q. Wang, J. Fang. Nature Communications, 9, 1 (2018). https://doi.org/10.1038/s41467-018-06204-2
- D. Yang, W. Ming, H. Shi, L. Zhang, M.-H. Du. Chemistry of Materials, 28, 12, 4349--4357 (2016). https://doi.org/10.1021/acs.chemmater.6b01348
- C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O'Regan, A. Walsh, M.S. Islam. Nature Communications, 6, 1 (2015). https://doi.org/10.1038/ncomms8497
- W. Li, M.U. Rothmann, Y. Zhu, W. Chen, C. Yang, Y. Yuan, Y.Y. Choo, X. Wen, Y.-B. Cheng, U. Bach. Nature Energy, 6, 6, 624--632 (2021). https://doi.org/10.1038/s41560-021-00830-9
- J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fang, J. Huang. Physical Chemistry Chemical Physics, 18, 44, 30484--30490 (2016). https://doi.org/10.1039/c6cp06496e
- B. Han, S. Yuan, B. Cai, J. Song, W. Liu, F. Zhang, T. Fang, C. Wei, H. Zeng. Advanced Functional Materials, 31, 26 (2021). https://doi.org/10.1002/adfm.202011003.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.