Physics of the Solid State
Volumes and Issues
The effect of introducing monoethanolammonium cation into hybrid halide perovskite films on the nature of their low-temperature conductivity
Ovezov M. K.1, Ryabko A. A.1, Aleshin P. A.1, Lodygin A. N.1, Vrublevskiy I. A.2, Moshnikov V. A.3, Aleshin A. N.1
1Ioffe Institute, St. Petersburg, Russia
2Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
3
Email: strontiumx94@gmail.com

PDF
Hybrid organo-inorganic halide perovskites are promising materials for optoelectronic devices. In this work, it was shown that the introduction of the monoethanolammonium cation MEA into the hybrid perovskite MAPbI3 leads to a change in the characteristic absorption peaks of FTIR spectroscopy, indicating chemical interaction of the monoethanolammonium cation with the hybrid perovskite. An increase in the proportion of the monoethanolammonium cation in the hybrid perovskite leads to an increase in the absorption edge energy of the perovskite and a significant change in the shape of the spectra, as well as to a change in the band diagram. Low-temperature conductivity (in the range of 100-200 K) is characterized by suppression of the ionic component, which is also accompanied by a significant decrease in the hysteresis of the current-voltage characteristics of the films. The results of measuring the temperature dependence of the current-voltage characteristics showed that the use of the monoethanolammonium cation in the hybrid perovskite leads to an increase in the activation energy of ionic conductivity and a decrease in hysteresis, which helps to reduce the degradation of devices based on hybrid perovskites. Keywords: hybrid halide perovskites, monoethanolammonium cations, solar cells, low-temperature conductivity, hysteresis, I-V characteristics.
  1. S. Khatoon, V. Chakravorty, J. Singh, R.B. Singh, M.S. Hasnain, S.M.M. Hasnain. Materials Science for Energy Technologies, 6, 437--459 (2023). https://doi.org/10.1016/j.mset.2023.04.007
  2. F. Khan, B.D. Rezgui, M.T. Khan, F.A. Al-Sulaiman. Renewable and Sustainable Energy Reviews, 165, 112553 (2022). https://doi.org/10.1016/j.rser.2022.112553
  3. X. Zhang, M.E. Turiansky, J.-X. Shen, C.G.V. d. Walle. Journal of Applied Physics, 131, 9 (2022). https://doi.org/10.1063/5.0083686
  4. B.G. Krishna, D.S. Ghosh, S. Tiwari. Solar Energy, 224, 1369--1395 (2021). https://doi.org/10.1016/j.solener.2021.07.002
  5. M. Ahmadi, T. Wu, B. Hu. Advanced Materials, 29, 41 (2017). https://doi.org/10.1002/adma.201605242
  6. Y. C. Kim, K.H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo, Y.S. Choi, I.T. Han, S.Y. Lee, N.-G. Park. Nature, 550, 7674, 87--91 (2017). https://doi.org/10.1038/nature24032
  7. X. Zhao, H. Xu, Z. Wang, Y. Lin, Y. Liu. InfoMat, 1, 2, 183--210 (2019). https://doi.org/10.1002/inf2.12012
  8. X. Fan. Materials Today Sustainability, 24, 100603 (2023). https://doi.org/10.1016/j.mtsust.2023.100603
  9. B. Zhang, Y.-j. Liao, L. Tong, Y. Yang, X. Wang. Physical Chemistry Chemical Physics, 22, 15, 7778--7786 (2020). https://doi.org/10.1039/d0cp00866d
  10. T. Zhu, M.-X. Li, C. Zhang, Y. Dong, F. Sun, D. Li, F. You, Z. He, C. Liang. Materials Today Chemistry, 39, 102167 (2024). https://doi.org/10.1016/j.mtchem.2024.102167
  11. Z. Shen, Q. Han, X. Luo, Y. Shen, Y. Wang, Y. Yuan, Y. Zhang, Y. Yang, L. Han. Nature Photonics, 18, 5, 450--457 (2024). https://doi.org/10.1038/s41566-024-01383-5
  12. W. Feng, Y. Tan, M. Yang, Y. Jiang, B.-X. Lei, L.P. Wang, W.-Q. Wu. Chem, 8, 351--383 (2022). https://doi.org/10.1016/j.chempr.2021.11.010
  13. R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah, J. Liu, G.T. Harrison, M.I. Nugraha, M.K. Eswaran, M. Babics et al. Science, 376, 73--77 (2022). https://doi.org/10.1126/science.abm5784
  14. T.L. Leung, I. Ahmad, A.A. Syed, A.M.C. Ng, J. Popovic, W. Chen. Communications Materials, 3, 63 (2022). https://doi.org/10.1038/s43246-022-00285-9
  15. N. Mercier, S. Poiroux, A. Riou, P. Batail. Inorganic Chemistry, 43, 26, 8361--8366 (2004). https://doi.org/10.1021/ic048814u
  16. B. Cheng, T.-Y. Li, P. Maity, P.-C. Wei, D. Nordlund, K.-T. Ho, D.-H. Lien, C.-H. Lin, R.-Z. Liang, X. Miao, O.F. Mohammed, J.-H. He. Communications Physics, 1, 1 (2018). https://doi.org/10.1038/s42005-018-0082-8
  17. A. Leblanc, N. Mercier, M. Allain, J. Dittmer, V. Fernandez, T. Pauporte. Angewandte Chemie International Edition, 56, 50, 16067--16072 (2017). https://doi.org/10.1002/anie.201710021
  18. C.C. Tsai, Y.-P. Lin, M.K. Pola, S. Narra, E. Jokar, Y.-W. Yang, E.W.-G. Diau. ACS Energy Letters, 3, 2077--2085 (2018). https://doi.org/10.1021/acsenergylett.8b01046
  19. A. Ryabko, M. Ovezov, A. Tuchkovsky, O. Korepanov, A. Maximov, A. Komolov, E. Lazneva, E. Muratova, I. Vrublevsky, A. Aleshin et al. Nanomaterials, 15, 494 (2025). https://doi.org/10.3390/nano15070494
  20. A. Rajagopal, K. Yao, A.K.-Y. Jen. Advanced Materials, 30, 1800455 (2018). https://doi.org/10.1002/adma.201800455
  21. G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F.D. Angelis, M. Gratzel et al. Nature Communications, 8, 15684 (2017). https://doi.org/10.1038/ncomms15684
  22. M. Garcia-Batlle, S. Deumel, J.E. Huerdler, S.F. Tedde, O. Almora, G. Garcia-Belmonte. Advanced Photonics Research, 3, 12 (2022). https://doi.org/10.1002/adpr.202200136
  23. M.A. Perez-Osorio, R.L. Milot, M.R. Filip, J.B. Patel, L.M. Herz, M.B. Johnston, F. Giustino. The Journal of Physical Chemistry C, 119, 46, 25703--25718 (2015). https://doi.org/10.1021/acs.jpcc.5b07432
  24. J. Sun, B. An, K. Zhang, M. Xu, Z. Wu, C. Ma, W. Li, S. Liu. Journal of Materials Chemistry A, 9, 43, 24650--24660 (2021). https://doi.org/10.1039/d1ta07498a
  25. P. Jackson, K. Robinson, G. Puxty, M.I. Attalla. Energy Procedia, 1, 1, 985--994 (2009). https://doi.org/10.1016/j.egypro.2009.01.131
  26. S.A. Legkov, G.N. Bondarenko, J.V. Kostina, E.G. Novitsky, S.D. Bazhenov, A.V. Volkov, V.V. Volkov. Molecules, 28, 403 (2023). https://doi.org/10.3390/molecules28010403
  27. A.M.A. Leguy, P. Azarhoosh, M.I. Alonso, M. Campoy-Quiles, O.J. Weber, J. Yao, D. Bryant, M.T. Weller, J. Nelson, A. Walsh, M.V. Schilfgaarde, P.R.F. Barnes. Nanoscale, 8, 6317--6327 (2016). https://doi.org/10.1039/c5nr05435d
  28. X. Li, W. Zhang, Y.-C. Wang, W. Zhang, H.-Q. Wang, J. Fang. Nature Communications, 9, 1 (2018). https://doi.org/10.1038/s41467-018-06204-2
  29. D. Yang, W. Ming, H. Shi, L. Zhang, M.-H. Du. Chemistry of Materials, 28, 12, 4349--4357 (2016). https://doi.org/10.1021/acs.chemmater.6b01348
  30. C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O'Regan, A. Walsh, M.S. Islam. Nature Communications, 6, 1 (2015). https://doi.org/10.1038/ncomms8497
  31. W. Li, M.U. Rothmann, Y. Zhu, W. Chen, C. Yang, Y. Yuan, Y.Y. Choo, X. Wen, Y.-B. Cheng, U. Bach. Nature Energy, 6, 6, 624--632 (2021). https://doi.org/10.1038/s41560-021-00830-9
  32. J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fang, J. Huang. Physical Chemistry Chemical Physics, 18, 44, 30484--30490 (2016). https://doi.org/10.1039/c6cp06496e
  33. B. Han, S. Yuan, B. Cai, J. Song, W. Liu, F. Zhang, T. Fang, C. Wei, H. Zeng. Advanced Functional Materials, 31, 26 (2021). https://doi.org/10.1002/adfm.202011003.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru