Maximizing the sensitivity of thin film metal dielectric refractometers
Sotsky A. B. 1, Ponkratov D. V. 1, Chudakov E. A. 1, Sotskaya L. I. 2
1Kuleshov State University, Mogilev, Belarus
2Belarusian–Russian University, Mogilev, Belarus
Email: ab_sotsky@mail.ru, d.v.ponkratov@yandex.by, kenni_mark@bk.ru, li_sotskaya@tut.by

PDF
A technique has been developed for calculating the reflectance of refractometers with a thin-film metal dielectric structure on the basis of a coupling prism, using multiplication of the characteristic matrices of the films. The characteristic matrices of the metallic films are obtained by numerical solution of the integral equations of the anomalous skin effect. Spectroscopic refractometers with the structure coupling-prism - gold film - dielectric film - water with a controllable refractive index were investigated. Fused quartz was chosen as the material for both the coupling prism and the dielectric film. The dielectric permittivity of the ionic lattice of gold and the constants of the electron gas in the gold films were determined from literature data on the spectral ellipsometry of gold films. It was shown that by choosing the thicknesses of the metallic and dielectric films, as well as the angle of incidence, one can combine two factors that lead to maximization of refractometer sensitivity - zero reflection from the base of the coupling prism and excitation in the dielectric film of a waveguide mode operating under conditions close to critical. When using s-polarized waves this allows the refractometer sensitivity to be increased to 9.6·105 nm/RIU. Estimates of the resolving power of thin-film metal dielectric refractometers based on the least-squares method are presented. Keywords: optical sensor, thin film refractometer, anomalous skin effect, zero reflection, mode near critical conditions.
  1. R. Slavi k, J. Homola. Sens. Actuators B: Chem., 123 (1), 10 (2007). DOI: 10.1016/j.snb.2006.08.020
  2. M. Piliarik, J. Homola. Opt. Express, 17 (19), 16505 (2009). DOI: 10.1364/oe.17.016505
  3. J.Y. Jing, Q. Wang, W.M. Zhao, B.T. Wang. Opt. Lasers Eng., 112, 103 (2019). DOI: 10.1016/j.optlaseng.2018.09.013
  4. B. Hossain, A.K. Paul, M.A. Islam, M.F. Hossain, M.M. Rahman. Results in Optics, 7, 100217 (2022). DOI: 10.1016/j.rio.2022.100217
  5. M. Myilsamy, P.C. Lordwin, A. Vibisha, S. Ponnan, J. Zbigniew, R.K. Balasundaram. Photonics Lett. Pol., 15 (2), 18 (2023). DOI: 10.4302/plp.v15i2.1206
  6. Q.M. Al-Bataineh, A.D. Telfah, C.J. Tavares, R. Hergenroder. Sens. Actuators A: Phys., 370, 115266 (2024). DOI: 10.1016/j.sna.2024.115266
  7. F. Wang, Y. Wei, Y. Han. Sensors, 24 (15), 5050 (2024). DOI: 10.3390/s24155050
  8. D.V. Nesterenko, Z. Sekkat. Plasmonics, 8 (4), 1 (2013). DOI: 10.1007/s11468-013-9575-1
  9. A.B. Sotsky, M.M. Nazarov, S.S. Miheev, L.I. Sotskaya. Tech. Phys., 66, 305 (2021). DOI: 10.1134/S1063784221020195
  10. A.B. Sotsky, E.A. Chudakov, A.V. Shilov, L.I. Sotskaya. ZhTF, 94 (2), 267 (2024) (in Russian). DOI: 10.61011/JTF.2024.02.57082.185-23
  11. I.U. Primak. Tech. Phys., 49, 1319 (2004). DOI: 10.1134/1.1809704
  12. R.L. Olmon, B. Slovick, T.W. Johnson, D. Shelton, S.H. Oh, G.D. Boreman, M.B. Raschke. Phys. Rev. B, 86, 235147 (2012). DOI: 10.1103/PhysRevB.86.235147
  13. E.T. Hu, Q.Y. Cai, R.J. Zhang, Y.F. Wei, W.C. Zhou, S.Y. Wang, Y.X. Zheng, W. Wei, L.Y. Chen. Opt. Lett., 41 (21), 4907 (2016). DOI: 10.1364/OL.41.004907
  14. D.I. Yakubovsky, A.V. Arsenin, Y.V. Stebunov, D.Y. Fedyanin, V.S. Volkov. Opt. Express, 25 (21), 25574 (2017). DOI: 10.1364/OE.25.025574
  15. A.V. Sokolov. Opticheskiye svoistva metallov (GIFML, M., 1961) (in Russian)
  16. A.B. Sotsky, E.A. Chudakov, L.I. Sotskaya. Opt. Spectrosc., 129, 1023 (2021). DOI: 10.1134/S0030400X21070195
  17. A.B. Sotsky, E.A. Chudakov, L.I. Sotskaya. JAS, 91, 812 (2024). DOI: 10.1007/s10812-024-01789-7
  18. Handbook of Optical Constants of Solids, ed. by E.D. Palik (Naval Research Laboratory, Washington, D.C., 1985). DOI: 10.1016/C2009-0-20920-2
  19. A.B. Sotsky. Teoriya opticheskilh volnovodnykh elementov (Mogilev State A. Kuleshov University, Mogilev, 2011) (in Russian)
  20. [ An Introduction to Optical Waveguides, ed. by M.J. Adams (Wiley, N.Y., 1981)
  21. G.M. Hale, M.R. Querry. Appl. Opt., 12 (3), 555 (1973). DOI: 10.1364/ao.12.000555
  22. [ Mathematical handbook, ed. by G.A. Korn, T.M. Korn (McGraw-Hill Book Company, N.Y., 1968)]
  23. G.G. Nenninger, M. Piliarik, J. Homola. Meas. Sci. Technol., 13 (12), 2038 (2002). DOI: 10.1088/0957-0233/13/12/332

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru