Optical and structural properties of semi-transparent flexible AgNWs/PET thin films
Urazkulova D.M.1, Boynazarov I.R.1, Turgunboev A.Y.1, Xin Li2, Long Ye2, Sunsun Li3, Zakhidov E.A.1, Nematov Sh.K.4, Kuvondikov V.O1
1Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
2School of Materials Science and Engineering, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
3Key Laboratory of Flexible Electronics, Institute of Advanced Materials & School of Flexible Electronics, Nanjing Tech University, Nanjing, China
4Shakhrisabz State Pedagogical Institute, Shahrisabz, Uzbekistan
Email: urazkulovadiyosh@gmail.com, ilhomboynazarov0821@gmail.com, turgunboevabror691@gmail.com, lx160401@163.com, yelong@tju.edu.cn, iamssli@njtech.edu.cn, ezakhidov@hotmail.com, sh.nematov@hotmail.com, vahobjon87@gmail.com
In this work, silver nanowires (AgNWs) synthesized by the "Polyol" method were deposited on polyethylene terephthalate (PET) substrates in two layers using mechanical pressing, resulting in AgNWs/PET structures, and their physical properties were studied. It is shown that in this way it is possible to obtain AgNWs nanowires with a diameter of 50±10 nm, a length of 15-20 μm and a density of 105-115 mg/m2 and a thin AgNWs/PET film with a resistance of 2.4 Ω/sq. The studied optical, electrical and structural characteristics of AgNWs/PET thin films confirm that they are a promising material as an electrode for flexible organic solar cells. Keywords: AgNWs nanowires, PET substrate, transparent flexible electrode, absorption spectrum, transmission spectrum, Raman scattering.
- X. Sun, F. Wang, G. Yang, X. Ding, J. Lv, Y. Sun, T. Wang, C. Gao, G. Zhang, W. Liu, X. Xu, S. Satapathi, X. Ouyang, A. Ng, L. Ye, M. Yuan, H. Zhang, H. Hu. Energy Environ. Sci., 18, 2536 (2025). DOI: 10.1039/D4EE05533K
- D. Qiu, C. Tian, H. Zhang, J. Zhang, Z. Wei, K. Lu. Adv. Mater., 36, 2313251 (2024). DOI: 10.1002/adma.202313251
- J. Lv, X. Sun, H. Tang, F. Wang, G. Zhang, L. Zhu, J. Huang, Q. Yang, S. Lu, G. Li, F. Laquai, H. Hu. InfoMat 6, e12530 (2024). DOI: 10.1002/inf2.12530
- M.R. Azani, A. Hassanpour, T. Torres. Adv. Energy Mater., 10, 2002536 (2020). DOI: 10.1002/aenm.202002536
- Y. Fang, Z. Wu, J. Li, F. Jiang, K. Zhang, Y. Zhang, Y. Zhou, J. Zhou, B. Hu. Adv. Funct. Mater., 28, 1705409 (2018). DOI: 10.1002/adfm.201705409
- E. Zakhidov, A. Kokhkharov, V. Kuvondikov, S. Nematov, R. Nusretov. J. Korean Phys. Soc., 67, 1262 (2015). DOI: 10.3938/jkps.67.1262
- Y. Bae, D. Kim, S. Li, Y. Choi, S.Y. Son, T. Park, L. Ye. Prog. Polym. Sci., 159, 101899 (2024). DOI: 10.1016/j.progpolymsci.2024.101899
- S. Zeng, H. Li, S. Liu, T. Xue, K. Zhang, L. Hu, Z. Cai, Y. Cui, H. Wang, M. Zhang, X. Hu, L. Ye, Y. Song, Y. Chen. Energy Environ. Sci., 18, 2318 (2025). DOI: 10.1039/D4EE02963A
- S. De, J.N. Coleman. MRS Bull., 36, 774 (2011). DOI: 10.1557/mrs.2011.236
- K. Yang, Z. Wang, J. Zhang. Opt. Laser Technol., 164, 109533 (2023). DOI: 10.1016/j.optlastec.2023.109533
- S. Nam, M. Song, D.H. Kim, B. Cho, H.M. Lee, J.D. Kwon, S.G. Park, K.S. Nam, Y. Jeong, S.H. Kwon, Y.C. Park, S.H. Jin, J.W. Kang, S. Jo, C.S. Kim. Sci. Reports., 4, 1 (2014). DOI: 10.1038/srep04788
- W. Li, H. Zhang, S. Shi, J. Xu, X. Qin, Q. He, K. Yang, W. Dai, G. Liu, Q. Zhou, H. Yu, S.R.P. Silva, M. Fahlman. J. Mater. Chem. C., 8, 4636 (2020). DOI: 10.1039/C9TC06865A
- F. Basarir, F.S. Irani, A. Kosemen, B.T. Camic, F. Oytun, B. Tunaboylu, H.J. Shin, K.Y. Nam, H. Choi. Mater. Today Chem., 3, 60 (2017). DOI: 10.1016/j.mtchem.2017.02.001
- L. Zhang, T. Song, L. Shi, N. Wen, Z. Wu, C. Sun, D. Jiang, Z. Guo. J. Nanostructure Chem., 2021 113 11, 323 (2021). DOI: 10.1007/s40097-021-00436-3
- X. Yu, X. Yu, L. Chen, J. Zhang, Y. Long, L. Zhe, J. Hu, H. Zhang, Y. Wang. Opt. Mater., 84, 490 (2018). DOI: 10.1016/j.optmat.2018.07.048
- B.Y. Wang, T.H. Yoo, J.W. Lim, B.I. Sang, D.S. Lim, W.K. Choi, D.K. Hwang, Y.J. Oh. Small., 11, 1905 (2015). DOI: 10.1002/smll.201402161
- C. Preston, Y. Xu, X. Han, J.N. Munday, L. Hu. Nano Res., 6, 461 (2013). DOI: 10.1007/s12274-013-0323-9
- M. xiang Jing, M. Li, C. yu Chen, Z. Wang, X. qian Shen. J. Mater. Sci., 50, 6437 (2015). DOI: 10.1007/s10853-015-9198-3
- M. Li, M. Jing, Z. Wang, B. Li, X. Shen. J. Nanosci. Nanotechnol., 15, 6088 (2015). DOI: 10.1166/jnn.2015.10283
- M. Oh, W.Y. Jin, H. Jun Jeong, M.S. Jeong, J.W. Kang, H. Kim. Sci. Reports., 5, 1 (2015). DOI: 10.1038/srep13483
- B. Park, I.G. Bae, Y.H. Huh. Sci. Reports., 6, 1 (2016). DOI: 10.1038/srep19485
- S. Fahad, H. Yu, L. Wang, Y. Wang, T. Lin, B.U. Amin, K.U.R. Naveed, R.U. Khan, S. Mehmood, F. Haq, Y. Xing, M. Usman. J. Electron. Mater., 50, 2789 (2021). DOI: 10.1007/s11664-021-08770-6
- B.A. Kale, S.N. Birajdar, P.U. More, P.V. Adhyapak. J. Mater. Sci. Mater. Electron., 35, 1 (2024). DOI: 10.1007/s10854-024-12087-5
- W. Xu, Q. Xu, Q. Huang, R. Tan, W. Shen. W. Song, J. Mater. Sci. Technol., 32, 158 (2016). DOI: 10.1016/j.jmst.2015.12.009
- A. Voronin, I. Bril., A. Pavlikov, M. Makeev, P. Mikhalev, B. Parshin, Y. Fadeev, M. Khodzitsky, M. Simunin, S. Khartov. Polymers (Basel)., 17, 321 (2025). DOI: 10.3390/polym17030321
- S. Dong, W. Zhang, M. Qi, A. Wei, G. Zhang, R. Chen, J. Hu, M. Bai, Z. Yang, X. Liu, L. Xiao, C. Qin, S. Jia. ACS Photonics., 12, 1 (2025). DOI: 10.1021/acsphotonics.4c01886
- V. Kravets, Z. Almemar, K. Jiang, K. Culhane, R. Machado, G. Hagen, A. Kotko, I. Dmytruk, K. Spendier, A. Pinchuk. Nanoscale Res. Lett., 11, 1 (2016). DOI: 10.1186/s11671-016-1243-x
- M. Hamzah, M. Khenfouch, V.V. Srinivasu. J. Mater. Sci. Mater. Electron., 28, 1804 (2017). DOI: 10.1007/s10854-016-5729-1
- J. Jiu, T. Sugahara, M. Nogi, K. Suganuma. J. Nanoparticle Res., 15, 1 (2013). DOI: 10.1007/s11051-013-1588-3
- J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz. J. Chem. Phys., 116, 6755 (2002). DOI: 10.1063/1.1462610
- J. Niedzio ka-Jonsson, S. Mackowski. Mater., 12, 1418 (2019). DOI: 10.3390/ma12091418
- S. Link, M.A. El-Sayed. J. Phys. Chem. B., 103, 8410 (1999). DOI: 10.1021/jp9917648
- D.D. Evanoff, G. Chumanov. J. Phys. Chem. B., 108, 13957 (2004). DOI: 10.1021/jp0475640
- P.K. Jain, M.A. El-Sayed. Chem. Phys. Lett., 487, 153 (2010). DOI: 10.1016/j.cplett.2010.01.062
- V.O.Bolshakov, K.V. Prigoda, A.A. Ermina, D.P. Markov, Yu.A. Zharova. Opt. Spectrosc., 132 : 12, 1240-1243, (2024). DOI: 10.61011/OS.2024.12.59801.6451-24
- Y.-H. Hsueh, A. Ranjan, L.-M. Lyu, K.-Y. Hsiao, Y.-C. Chang, M.-P. Lu, M.-Y. Lu, M.-Y. Lu. Adv. Electron. Mater., 9, 2201054 (2023). DOI: 10.1002/aelm.202201054
- M.B. Gebeyehu, T.F. Chala, S.Y. Chang, C.M. Wu, J. Y. Lee. RSC Adv., 7, 16139 (2017). DOI: 10.1039/C7RA00238F
- X. Zhu, A. Guo, Z. Yan, F. Qin, J. Xu, Y. Ji, C. Kan. Nanoscale., 13, 8067 (2021). DOI: 10.1039/D1NR00977J
- E.A. Zakhidov, M. A. Zakhidova, A. M. Kokhkharov, S.K. Nematov, R.A. Nusretov, V.O. Kuvondikov, A.A. Saparbaev. Opt. Spectrosc., 122, 607 (2017). DOI: 10.1134/S0030400X1704021X
- F. Wu, H. Shi, Y. Gao, L. Cheng, T. Gu, T. Liu, Z. Chen, W. Fan. Sci. Reports., 14, 1 (2024). DOI: 10.1038/s41598-024-80655-0
- L. Zhou, Y. Peng, N. Zhang, R. Du, R. Hubner, X. Wen, D. Li, Y. Hu, A. Eychmuller, L. Zhou, Y. Hu, R. Du, Y. Peng, X. Wen, D. Li, N. Zhang, A. Eychmuller, R. Hubner Helmholtz-Zentrum Dresden-Rossendorf, Adv. Opt. Mater., 9, 2100352 (2021). DOI: 10.1002/adfm.202100352
- D. Kumar, Kavita, K. Singh, V. Verma, H. S. Bhatti. Appl. Nanosci., 5, 881 (2015). DOI: 10.1007/s13204-014-0386-2
- L. Bardet, H. Roussel, S. Saroglia, M. Akbari, D. Munoz-Rojas, C. Jimenez, A. Denneulin, D. Bellet. Nanoscale., 16, 564 (2024). DOI: 10.1039/D3NR02663A