Optical and structural properties of semi-transparent flexible AgNWs/PET thin films
Urazkulova D.M.1, Boynazarov I.R.1, Turgunboev A.Y.1, Xin Li2, Long Ye2, Sunsun Li3, Zakhidov E.A.1, Nematov Sh.K.4, Kuvondikov V.O1
1Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
2School of Materials Science and Engineering, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
3Key Laboratory of Flexible Electronics, Institute of Advanced Materials & School of Flexible Electronics, Nanjing Tech University, Nanjing, China
4Shakhrisabz State Pedagogical Institute, Shahrisabz, Uzbekistan
Email: urazkulovadiyosh@gmail.com, ilhomboynazarov0821@gmail.com, turgunboevabror691@gmail.com, lx160401@163.com, yelong@tju.edu.cn, iamssli@njtech.edu.cn, ezakhidov@hotmail.com, sh.nematov@hotmail.com, vahobjon87@gmail.com

PDF
In this work, silver nanowires (AgNWs) synthesized by the "Polyol" method were deposited on polyethylene terephthalate (PET) substrates in two layers using mechanical pressing, resulting in AgNWs/PET structures, and their physical properties were studied. It is shown that in this way it is possible to obtain AgNWs nanowires with a diameter of 50±10 nm, a length of 15-20 μm and a density of 105-115 mg/m2 and a thin AgNWs/PET film with a resistance of 2.4 Ω/sq. The studied optical, electrical and structural characteristics of AgNWs/PET thin films confirm that they are a promising material as an electrode for flexible organic solar cells. Keywords: AgNWs nanowires, PET substrate, transparent flexible electrode, absorption spectrum, transmission spectrum, Raman scattering.
  1. X. Sun, F. Wang, G. Yang, X. Ding, J. Lv, Y. Sun, T. Wang, C. Gao, G. Zhang, W. Liu, X. Xu, S. Satapathi, X. Ouyang, A. Ng, L. Ye, M. Yuan, H. Zhang, H. Hu. Energy Environ. Sci., 18, 2536 (2025). DOI: 10.1039/D4EE05533K
  2. D. Qiu, C. Tian, H. Zhang, J. Zhang, Z. Wei, K. Lu. Adv. Mater., 36, 2313251 (2024). DOI: 10.1002/adma.202313251
  3. J. Lv, X. Sun, H. Tang, F. Wang, G. Zhang, L. Zhu, J. Huang, Q. Yang, S. Lu, G. Li, F. Laquai, H. Hu. InfoMat 6, e12530 (2024). DOI: 10.1002/inf2.12530
  4. M.R. Azani, A. Hassanpour, T. Torres. Adv. Energy Mater., 10, 2002536 (2020). DOI: 10.1002/aenm.202002536
  5. Y. Fang, Z. Wu, J. Li, F. Jiang, K. Zhang, Y. Zhang, Y. Zhou, J. Zhou, B. Hu. Adv. Funct. Mater., 28, 1705409 (2018). DOI: 10.1002/adfm.201705409
  6. E. Zakhidov, A. Kokhkharov, V. Kuvondikov, S. Nematov, R. Nusretov. J. Korean Phys. Soc., 67, 1262 (2015). DOI: 10.3938/jkps.67.1262
  7. Y. Bae, D. Kim, S. Li, Y. Choi, S.Y. Son, T. Park, L. Ye. Prog. Polym. Sci., 159, 101899 (2024). DOI: 10.1016/j.progpolymsci.2024.101899
  8. S. Zeng, H. Li, S. Liu, T. Xue, K. Zhang, L. Hu, Z. Cai, Y. Cui, H. Wang, M. Zhang, X. Hu, L. Ye, Y. Song, Y. Chen. Energy Environ. Sci., 18, 2318 (2025). DOI: 10.1039/D4EE02963A
  9. S. De, J.N. Coleman. MRS Bull., 36, 774 (2011). DOI: 10.1557/mrs.2011.236
  10. K. Yang, Z. Wang, J. Zhang. Opt. Laser Technol., 164, 109533 (2023). DOI: 10.1016/j.optlastec.2023.109533
  11. S. Nam, M. Song, D.H. Kim, B. Cho, H.M. Lee, J.D. Kwon, S.G. Park, K.S. Nam, Y. Jeong, S.H. Kwon, Y.C. Park, S.H. Jin, J.W. Kang, S. Jo, C.S. Kim. Sci. Reports., 4, 1 (2014). DOI: 10.1038/srep04788
  12. W. Li, H. Zhang, S. Shi, J. Xu, X. Qin, Q. He, K. Yang, W. Dai, G. Liu, Q. Zhou, H. Yu, S.R.P. Silva, M. Fahlman. J. Mater. Chem. C., 8, 4636 (2020). DOI: 10.1039/C9TC06865A
  13. F. Basarir, F.S. Irani, A. Kosemen, B.T. Camic, F. Oytun, B. Tunaboylu, H.J. Shin, K.Y. Nam, H. Choi. Mater. Today Chem., 3, 60 (2017). DOI: 10.1016/j.mtchem.2017.02.001
  14. L. Zhang, T. Song, L. Shi, N. Wen, Z. Wu, C. Sun, D. Jiang, Z. Guo. J. Nanostructure Chem., 2021 113 11, 323 (2021). DOI: 10.1007/s40097-021-00436-3
  15. X. Yu, X. Yu, L. Chen, J. Zhang, Y. Long, L. Zhe, J. Hu, H. Zhang, Y. Wang. Opt. Mater., 84, 490 (2018). DOI: 10.1016/j.optmat.2018.07.048
  16. B.Y. Wang, T.H. Yoo, J.W. Lim, B.I. Sang, D.S. Lim, W.K. Choi, D.K. Hwang, Y.J. Oh. Small., 11, 1905 (2015). DOI: 10.1002/smll.201402161
  17. C. Preston, Y. Xu, X. Han, J.N. Munday, L. Hu. Nano Res., 6, 461 (2013). DOI: 10.1007/s12274-013-0323-9
  18. M. xiang Jing, M. Li, C. yu Chen, Z. Wang, X. qian Shen. J. Mater. Sci., 50, 6437 (2015). DOI: 10.1007/s10853-015-9198-3
  19. M. Li, M. Jing, Z. Wang, B. Li, X. Shen. J. Nanosci. Nanotechnol., 15, 6088 (2015). DOI: 10.1166/jnn.2015.10283
  20. M. Oh, W.Y. Jin, H. Jun Jeong, M.S. Jeong, J.W. Kang, H. Kim. Sci. Reports., 5, 1 (2015). DOI: 10.1038/srep13483
  21. B. Park, I.G. Bae, Y.H. Huh. Sci. Reports., 6, 1 (2016). DOI: 10.1038/srep19485
  22. S. Fahad, H. Yu, L. Wang, Y. Wang, T. Lin, B.U. Amin, K.U.R. Naveed, R.U. Khan, S. Mehmood, F. Haq, Y. Xing, M. Usman. J. Electron. Mater., 50, 2789 (2021). DOI: 10.1007/s11664-021-08770-6
  23. B.A. Kale, S.N. Birajdar, P.U. More, P.V. Adhyapak. J. Mater. Sci. Mater. Electron., 35, 1 (2024). DOI: 10.1007/s10854-024-12087-5
  24. W. Xu, Q. Xu, Q. Huang, R. Tan, W. Shen. W. Song, J. Mater. Sci. Technol., 32, 158 (2016). DOI: 10.1016/j.jmst.2015.12.009
  25. A. Voronin, I. Bril., A. Pavlikov, M. Makeev, P. Mikhalev, B. Parshin, Y. Fadeev, M. Khodzitsky, M. Simunin, S. Khartov. Polymers (Basel)., 17, 321 (2025). DOI: 10.3390/polym17030321
  26. S. Dong, W. Zhang, M. Qi, A. Wei, G. Zhang, R. Chen, J. Hu, M. Bai, Z. Yang, X. Liu, L. Xiao, C. Qin, S. Jia. ACS Photonics., 12, 1 (2025). DOI: 10.1021/acsphotonics.4c01886
  27. V. Kravets, Z. Almemar, K. Jiang, K. Culhane, R. Machado, G. Hagen, A. Kotko, I. Dmytruk, K. Spendier, A. Pinchuk. Nanoscale Res. Lett., 11, 1 (2016). DOI: 10.1186/s11671-016-1243-x
  28. M. Hamzah, M. Khenfouch, V.V. Srinivasu. J. Mater. Sci. Mater. Electron., 28, 1804 (2017). DOI: 10.1007/s10854-016-5729-1
  29. J. Jiu, T. Sugahara, M. Nogi, K. Suganuma. J. Nanoparticle Res., 15, 1 (2013). DOI: 10.1007/s11051-013-1588-3
  30. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz. J. Chem. Phys., 116, 6755 (2002). DOI: 10.1063/1.1462610
  31. J. Niedzio ka-Jonsson, S. Mackowski. Mater., 12, 1418 (2019). DOI: 10.3390/ma12091418
  32. S. Link, M.A. El-Sayed. J. Phys. Chem. B., 103, 8410 (1999). DOI: 10.1021/jp9917648
  33. D.D. Evanoff, G. Chumanov. J. Phys. Chem. B., 108, 13957 (2004). DOI: 10.1021/jp0475640
  34. P.K. Jain, M.A. El-Sayed. Chem. Phys. Lett., 487, 153 (2010). DOI: 10.1016/j.cplett.2010.01.062
  35. V.O.Bolshakov, K.V. Prigoda, A.A. Ermina, D.P. Markov, Yu.A. Zharova. Opt. Spectrosc., 132 : 12, 1240-1243, (2024). DOI: 10.61011/OS.2024.12.59801.6451-24
  36. Y.-H. Hsueh, A. Ranjan, L.-M. Lyu, K.-Y. Hsiao, Y.-C. Chang, M.-P. Lu, M.-Y. Lu, M.-Y. Lu. Adv. Electron. Mater., 9, 2201054 (2023). DOI: 10.1002/aelm.202201054
  37. M.B. Gebeyehu, T.F. Chala, S.Y. Chang, C.M. Wu, J. Y. Lee. RSC Adv., 7, 16139 (2017). DOI: 10.1039/C7RA00238F
  38. X. Zhu, A. Guo, Z. Yan, F. Qin, J. Xu, Y. Ji, C. Kan. Nanoscale., 13, 8067 (2021). DOI: 10.1039/D1NR00977J
  39. E.A. Zakhidov, M. A. Zakhidova, A. M. Kokhkharov, S.K. Nematov, R.A. Nusretov, V.O. Kuvondikov, A.A. Saparbaev. Opt. Spectrosc., 122, 607 (2017). DOI: 10.1134/S0030400X1704021X
  40. F. Wu, H. Shi, Y. Gao, L. Cheng, T. Gu, T. Liu, Z. Chen, W. Fan. Sci. Reports., 14, 1 (2024). DOI: 10.1038/s41598-024-80655-0
  41. L. Zhou, Y. Peng, N. Zhang, R. Du, R. Hubner, X. Wen, D. Li, Y. Hu, A. Eychmuller, L. Zhou, Y. Hu, R. Du, Y. Peng, X. Wen, D. Li, N. Zhang, A. Eychmuller, R. Hubner Helmholtz-Zentrum Dresden-Rossendorf, Adv. Opt. Mater., 9, 2100352 (2021). DOI: 10.1002/adfm.202100352
  42. D. Kumar, Kavita, K. Singh, V. Verma, H. S. Bhatti. Appl. Nanosci., 5, 881 (2015). DOI: 10.1007/s13204-014-0386-2
  43. L. Bardet, H. Roussel, S. Saroglia, M. Akbari, D. Munoz-Rojas, C. Jimenez, A. Denneulin, D. Bellet. Nanoscale., 16, 564 (2024). DOI: 10.1039/D3NR02663A
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru