Faraday effect in three-periodic bigyrotropic photonic crystals
Dadoenkova N. N. 1, Glukhov I. A. 1,2,3, Panyaev I. S. 1,2, Sannikov D. G. 1,2, Dadoenkova Y. S. 4
1Donetsk Institute for Physics and Engineering named after A.A. Galkin, Donetsk, Russia
2Ulyanovsk State University, Ulyanovsk, Russia
3Kotel’nikov Institute of Radio Engineering and Electronics (Ulyanovsk Branch), Russian Academy of Sciences, Ulyanovsk, Russia
4Universite Jean Monnet Saint-Etienne, CNRS, Institut d'optique Graduate School, Laboratoire Hubert Curien UMR, Saint-Etienne, France
Email: dadoenkova@yahoo.com, glukhov91@yandex.ru, panyaev.ivan@rambler.ru, sannikov-dg@yandex.ru, yuliya.dadoenkova@univ-st-etienne.fr

PDF
The magneto-optical Faraday effect in one-dimensional triply periodic photonic-crystalline structures based on dielectrics (SiO2, TiO2) and ferrite garnets (YIG, Bi:YIG) forming supercells of type [(ab)N(cd)M]was theoretically investigated. The polar magneto-optical configuration, in which the magnetization vectors of the magnetic layers of the photonic crystals are orthogonal to the layer interfaces, and an electromagnetic wave propagating in the photonic-crystal structure has a wave vector component along the direction of the magnetization vectors, was considered. Using the transfer-matrix method, (4x4) frequency-angular spectra of transmission of plane electromagnetic waves through these photonic crystals were obtained. The position and structure of transmission bands in the forbidden photonic zones' spectra, as well as the dependencies of the Faraday rotation angles on frequency and angle of incidence of the electromagnetic wave, were studied for photonic crystals at N=3, M=5 and K=7 (optimal number of periods) and various thicknesses of magnetic layers. It was shown that triply periodic photonic crystals can simultaneously exhibit high transmission coefficients and large Faraday rotation angles, making these structures promising for various technical applications. Keywords: magneto-optical Faraday effect, photonic bandgap, photonic crystals.
  1. A.K. Zvezdin, V.A. Kotov. Modern Magnetooptics and Magnetooptical Materials (Bristol, Institute of Physics Publishing, 1997). DOI: 10.1201/9780367802608
  2. Magnetism, ed. by E. Du Tremolet de Lacheisserie, D. Gignouxand M. Schlenker (Boston, Springer, 2005)
  3. J. Grafe, M. Schmidt, P. Audehm, G. Schutz, E. Goering. Rev. Sci. Instrum., 85, 023901 (2014). DOI: 10.1063/1.4865135
  4. M. Atature, J. Dreiser, A. Badolato, A. Imamoglu. Nature Phys., 3, 101 (2007). DOI: 10.1038/nphys521
  5. N. Dissanayake, M. Levy, A. Chakravarty, P.A. Heiden, N. Chen, V.J. Fratello. J. Appl. Phys., 99, 091112 (2011). DOI: 10.1063/1.3633344
  6. Y.S. Dadoenkova, I.L. Lyubchanskii, Y.P. Lee, T. Rasing. Appl. Phys. Lett., 97 (11), 011901 (2010). DOI: 10.1063/1.3488679
  7. T. Goto, A.V. Baryshev, K. Tobinaga, M. Inoue. J. Appl. Phys., 107, 09A946 (2010). DOI: 10.1063/1.3365431
  8. T. Mikhailova, A. Shaposhnikov, A. Prokopov, A. Karavainikov, S. Tomilin, S. Lyashko, V. Berzhansky. In: EPJ Web of Conferences (2018), vol. 185, 02016. DOI: 10.1051/epjconf/201818502016
  9. Y.S. Dadoenkova, F.F.L. Bentivegna, S.G.Moiseev. Phys. Scr., 98, 105006 (2019). DOI: 10.1088/1402-4896/ab2780
  10. E.A. Diwan, F. Royer, D. Jamon, R. Kekesi, S. Neveau, M.F. Blanc-Mignon, J.J. Rousseau. JNN, 16, 10160 (2016). DOI: 10.1166/jnn.2016.12844
  11. B. Gaiyan, D. Lijuan, F. Shuai, F. Zhifang. Opt. Mater., 35 (2), 252 (2012). DOI: 10.1016/j.optmat.2012.08.015
  12. Y.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii, J. Klos, M. Krawczyk. IEEE Trans. Magn., 53, 2501005 (2017). DOI: 10.1109/TMAG.2017.2712278
  13. J.W. Klos, M. Krawczyk, Y.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii. J. Appl. Phys., 115 (17), 174311 (2014). DOI: 10.1063/1.4874797
  14. Y.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii, J.W. Klos, M. Krawczyk. J. Appl. Phys., 120 (7), 73903 (2016). DOI: 10.1063/1.4961326
  15. J.W. Klos, M. Krawczyk, Y.S. Dadoenkova, N.N. Dadoenkova, I.L. Lyubchanskii. IEEE Trans. Magn., 50 (11), 2 (2014). DOI: 10.1109/TMAG.2014.2321532
  16. Y.S. Dadoenkova, N.N. Dadoenkova, J.W. K os, M. Krawczyk, I.L. Lyubchanskii. Phys. Rev. A, 96 (4), 43804 (2017). DOI: 10.1103/PhysRevA.96.043804
  17. J.D. Joannopoulos, S.G. Johnson, J.N.J. Winn, R.D. Meade. Photonic Crystals. Molding the Flow of Light, 2nd ed. (Princeton, Prinstone University Press, 2008)
  18. S.V. Eliseeva, Y.F. Nasedkina, D.I. Sementsov. Progr. Electromag. Res. M, 51, 131 (2016). DOI: 10.2528/PIERM16080403
  19. I.S. Panyaev, L.R. Yafarova, D.G. Sannikov, N.N. Dadoenkova, Y.S. Dadoenkova, I.L. Lyubchanskii. J. Appl. Phys., 126 (10), 103102 (2019). DOI: 10.1063/1.5115829
  20. I.S. Panyaev, N.N. Dadoenkova, Y.S. Dadoenkova, I.A. Rozhleys, M. Krawczyk, I.L. Lyubchanskii, D.G. Sannikov. J. Phys. D, 49 (43), 435103 (2016). DOI: 10.1088/0022-3727/49/43/435103
  21. I.S. Panyaev, D.G. Sannikov, Y.S. Dadoenkova, N.N. Dadoenkova. IEEE Sens. J., 22 (23), 22428 (2022). DOI: 10.1109/JSEN.2022.3217117
  22. I.S. Panyaev, D.G. Sannikov, N.N. Dadoenkova, Y.S. Dadoenkova. Appl. Opt., 60 (7), 1943 (2021). DOI: 10.1364/ao.415966
  23. I.A. Glukhov, S.G. Moiseev. Opt. Spetrosk., 131 (11), 1475 (2023). DOI: 10.61011/OS.2023.11.57005.5095-23
  24. A.D. Block, P. Dulal, B.J.H. Stadler, N.C.A. Seaton. IEEE Photonics J., 6, 0600308 (2014). DOI: 10.1109/JPHOT.2013.2293610
  25. A. Kehlberger, K. Richter, M.C. Onbasli, G. Jakob, D.H. Kim, T. Goto, C.A. Ross, G. Gotz, G. Reiss, T. Kuschel, M. Klaui. Phys. Rev. Applied, 4, 014008 (2015). DOI: 10.1103/PhysRevApplied.4.014008
  26. S. Mito, Yu. Shiotsu, J. Sasano, H. Takagi, M. Inoue. AIP Advances, 7 (5), 056316 (2017). DOI: 10.1063/1.4976952
  27. F. Royer, B. Varghese, E. Gamet, S. Neveau, Y. Jourlin, D. Jamon. ACS Omega, 5, 2886 (2020). DOI: 10.21/acsomega.9b03728
  28. T.V. Mikhailova, V.N. Berzhansky, A.N. Shaposhnikov, A.V. Karavainikov, A.R. Prokopov, Y.M. Kharchenko, I.M. Lukienko, O.V. Miloslavskaya, M.F. Kharchenko. Opt. Mater., 78, 521 (2018). DOI: 10.1016/j.optmat.2018.03.011
  29. V.N. Berzhansky, A.N. Shaposhnikov, A.R. Prokopov, A.V. Karavainikov, T.V. Mikhailova, I.N. Lukienko, Yu.N. Kharchenko, V.O. Golub, O.Yu. Salyuk, V.I. Belotelov, ZhETF, 150, 859 (2016). (in Russian) DOI: 10.7868/S004445101611002X
  30. M. Inoue, K.I. Arai, T. Fujii, M. Abe. J. Appl. Phys., 83 (11), 6768 (1998). DOI: 10.1063/1.367789
  31. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P.B. Lim, H. Ushida, O. Aktsipetrov, A. Fedyanin, T. Murzina, A. Granovsky. J. Phys. D, 39, R151 (2006). DOI: 10.1109/INTMAG.2006.375428
  32. D.O. Ignatyeva, T.V. Mikhailova, P. Kapralov, S. Lyashko, V.N. Berzhansky, V.I. Belotelov. Phys. Rev. Applied, 22 (4), 044064 (2024). DOI: 10.1103/PhysRevApplied.22.044064
  33. I.A. Glukhov, I.S. Panyaev, D.G. Sannikov, Yu.S. Dadoenkova, N.N. Dadoenkova. Opt. i spektr., 132 (5), 557 (2024) (in Russian). DOI: 10.61011/OS.2024.05.58464.6401-24
  34. D.W. Berreman. J. Opt. Soc. Am., 62 (4), 502 (1972). DOI: 10.1364/JOSA.62.000502
  35. J.R. Devore. J. Opt. Soc. Am., 41 (6), 416 (1951). DOI: 10.1364/JOSA.41.000416
  36. I.H. Malitson. J. Opt. Soc. Am., 55 (10), 1205 (1965). DOI: 10.1364/JOSA.55.001205
  37. B. Johnson, A.K. Walton. Br. J. Appl. Phys., 16 (4), 475 (1965). DOI: 10.1088/0508-3443/16/4/310
  38. M. Torfeh, H. Le Gall. Phys. Status Solidi, 63 (1), 247 (1981). DOI: 10.1002/pssa.2210630133
  39. V. Doormann, J.P. Krumme, C.P. Klages, M. Erman. Appl. Phys. A, 34 (4), 223 (1984). DOI: 10.1007/BF00616576
  40. M. Wallenhorst, M. Niemoller, H. Dotsch, P. Hertel, R. Gerhardt, B. Gather. J. Appl. Phys., 77 (7), 2902 (1995). DOI: 10.1063/1.359516
  41. J.P. Krumme, C.P. Klages, V. Doormann. Appl. Opt., 23 (8), 1184 (1984). DOI: 10.1364/AO.23.001184
  42. N.N. Dadoenkova, I.L. Lyubchanskii, M.I. Lyubchanskii, E.A. Shapovalov, Y.P. Lee. Frontiers in Optical Technology: Materials \& Devices (Nova Science, New York, 2007), p. 22-72
  43. V.I. Belotelov, A.K. Zvezdin. Photonic Crystals and Other Metamaterials (Bureau Quantum, Moscow, 2006) 143 pages. (in Russian)
  44. M.J. Steel, M. Levy, R.M. Osgood, Jr. IEEE Photonics Technology Letters, 12 (9) 1171 (2000). DOI: 10.1109/68.874225

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru