Configurations of higher-order magnetic skyrmions and a Pearl vortex in a bound state
Fedoseev A.D.1, Shustin M.S.2, Dzebisashvili D.M.1
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2L.D. Landau Institute for Theoretical Physics, Chernogolovka, Russia
Email: mshustin@yandex.ru
Within the framework of the magnetic energy functional of the hybrid 2D structure superconductor-chiral magnet, which takes into account: exchange interaction, single-ion anisotropy, as well as orbital and Zeeman effects of the Pearl vortex scattering fields, the stabilization conditions of higher-order magnetic skyrmions with topological charges |Q|=3,4 are studied. In contrast to the case of |Q|=2, studied earlier [JETP Letters 120, 539-546 (2024)], skyrmions with higher |Q| do not necessarily form non-axial configurations of a bound pair with a Pearl vortex. Moreover, for skyrmions with |Q|=3, the competition of interactions in the continuum limit allows for different degrees of coaxiality, however, the coaxial configuration cannot be stabilized on a real discrete lattice due to the small size of the skyrmions. Skyrmions with |Q|=4 form stable coaxial pairs with a Pearl vortex. Keywords: magnetic skyrmions, Pearl vortex.
- A.A. Belavin, A.M. Polyakov. Pisma v ZhETF 22, 503 (1975). (in Russian)
- F.N. Rybakov, O. Eriksson, N.S. Kiselev. arXiv:2412.17641v1 (2024)
- S.S.P. Parkin, M. Hayashi, L. Thomas. Science 320, 190-194 (2008)
- S.S.P. Parkin, S.-H. Yang. Nat. Nanotechnol. 10, 195-198 (2015)
- C. Psaroudaki, E. Peraticos, C. Panagopoulos. Appl. Phys. Lett. 123, 260501 (2023)
- L. Rozsa, K. Palotas, A. Deak, E. Simon, R. Yanes, L. Udvardi, L. Szunyogh, U. Nowak. Phys. Rev. B 95, 094423 (2017)
- M. Hassan, S. Koraltan, A. Ullrich, F. Bruckner, R.O. Serha, Kh.V. Levchenko, G. Varvaro, N.S. Kiselev, M. Heigl, C. Abert, D. Suess, M. Albrecht. Nat. Phys. 20, 615--622 (2024)
- F. Rybakov, N. Kiselev. Phys. Rev. B 99, 064437 (2019)
- V.M. Kuchkin, B. Barton-Singer, F.N. Rybakov, S. Blugel, B.J. Schroers, R.N. Kiselev. Phys. Rev. B 102, 144422 (2020)
- J. Tang, Y. Wu, W. Wang, L. Kong, B. Lv, W. Wei, J. Zang, M. Tian, H.U. Du. Nat. Nanotechnol. 16, 1086-1091 (2021)
- L. Yang, A. Savchenko, F. Zheng, N.S. Kiselev, F.N. Rybakov, X. Han, S. Blugel, R.E. Dunin-Borkowski. Adv. Mater. 36, 2403274 (2024)
- B. Seng, D. Schonke, J. Yeste, R.M. Reeve, N. Kerber, D. Lacour, J.-L. Bello, N. Bergeard, F. Kammerbauer, M. Bhukta, T. Ferte, Ch. Boeglin, F. Radu, R. Abrudan, T. Kachel, S. Mangin, M. Hehn, M. Klau. Adv. Funct. Mater. 31, 2102307 (2021)
- D.S. Kathyat, P. Sengupta. Phys. Rev. B 110, 144409 (2024)
- A.N. Bogdanov, D.A. Yablonsky. Sov. Phys. JETP 95, 178 (1989)
- M.A. Kuznetsov, A.A. Fraerman. ZhETF 164, 514-525 (2023). (in Russian)
- A. Leonov, M. Mostovoy. Nat. Commun. 6, 8275 (2015)
- R. Ozawa, S. Hayami, Y. Motome. Phys. Rev. Lett. 118, 147205 (2017)
- K.L. Metlov. Phys. Rev. Lett. 105, 107201 (2010)
- M.S. Shustin, V.A. Stepanenko, D.M. Dzebisashvili. Phys. Rev. B. 107, 195428 (2023)
- M.S. Shustin, D.M. Dzebisashvili, V.A. Stepanenko. FTT, 65, 1021 (2023). (in Russian)
- A.D. Fedoseev, M.S. Shustin, D.M. Dzebisashvili. Pisma v ZhETF 120, 539 (2024). (in Russian)
- E.S. Andriyakhina, I.S. Burmistrov. Phys. Rev. B 103, 174519 (2021)
- E.S. Andriakhina, S. Apostoloff, I.S. Burmistrov. Pisma v ZhETF 116, 801 (2022). (in Russian)
- S.S. Apostoloff, E.S. Andriyakhina, P.A. Vorobyev, O.A. Tretiakov, I.S. Burmistrov. Phys. Rev. B 107, L220409 (2023)
- S.S. Apostoloff, E.S. Andriyakhina, I.S. Burmistrov. Phys. Rev. B 109, 104406 (2024)
- G. Yang, P. Stano, J. Klinovaja, D. Loss. Phys. Rev. B 93, 224505 (2016)
- A.P. Petrovic, M. Raju, X.Y. Tee, A. Louat, I. Maggio-Aprile, R.M. Menezes, M.J. Wyszynski, N.K. Duong, M. Reznikov. Phys. Rev. Lett. 126, 117205 (2021)
- E. Andriyakhina, I. Burmistrov. Phys. Rev. B 103, 17, 174519 (2021)
- U. Gungordu, A.A. Kovalev. J. Appl. Phys. 132, 041101 (2022)
- J. Nothhelfer, S.A. Di az, S. Kessler, T. Meng, M. Rizzi, K.M.D. Hals, K. Everschor-Sitt. Phys. Rev. B 105, 224509 (2022)
- S.T. Konakanchi, J.I. Vayrynen, Y.P. Chen, P. Upadhyaya, L.P. Rokhinson. Phys. Rev. Res. 5, 033109 (2023)
- D. Sen, R. Chitra. Phys. Rev. B 51, 1922 (1995)
- O.I. Motrunich. Phys. Rev. B 73, 155115 (2006)
- A.O. Leonov, T.L. Monchesky, N. Romming, A. Kubetzka, A.N. Bogdanov, R. Wiesendanger. New J. Phys. 18, 065003 (2016)
- R.M. Menezes, J.F.S. Neto, C.C. de Souza Silva, M.V. Milosevic. Phys. Rev. B 100, 014431 (2019)
- J. Pearl. Appl. Phys. Lett. 5, 65 (1964)
- A.A. Abrikosov. Fundamentals of the Theory of Metals. North-Holland, Amsterdam (1988)
- G. Carneiro, E.H. Brandt. Phys. Rev. B 61, 6370 (2000)
- X. Wang, H. Yuan, M.X. Wang. Commun. Phys. 1, 1 (2018)
- V.Yu. Irkhin, Yu.P. Irkhin. Elektronnaya strultura, korrelyatsionnye effekty i fizicheskie svoistva d- i f-perekhodnykh metallov i ikh soedineniy i ikh soedineniy. RKhD, M. (2008). p. 476 (in Russian)
- Y. Xie, A. Qian, B. He, Y.-B. Wu, Sh. Wang, B. Xu, G. Yu, X. Han, X.G. Qiu. Phys. Rev. Lett 133, 166706 (2024)
- M. Beg, M. Lang, H. Fangohr. IEEE Trans. Magn. 58, 1 (2022).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.