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Configurations of higher-order magnetic skyrmions and a Pearl vortex

in a bound state
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Within the framework of the magnetic energy functional of the hybrid 2D structure superconductor-chiral magnet,
which takes into account: exchange interaction, single-ion anisotropy, as well as orbital and Zeeman effects of the
Pearl vortex scattering fields, the stabilization conditions of higher-order magnetic skyrmions with topological
charges |Q| = 3,4 are studied. In contrast to the case of |Q| = 2, studied earlier [JETP Letters 120, 539—546
(2024)], skyrmions with higher |Q| do not necessarily form non-axial configurations of a bound pair with a Pearl
vortex. Moreover, for skyrmions with |Q| = 3, the competition of interactions in the continuum limit allows for
different degrees of coaxiality, however, the coaxial configuration cannot be stabilized on a real discrete lattice due
to the small size of the skyrmions. Skyrmions with |Q| = 4 form stable coaxial pairs with a Pearl vortex.
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1. Introduction

Two-dimensional magnetic skyrmions (MS) are locali-
zed vortex-like configurations for which the magnetization
field m(r) belongs to a nontrivial component of the homo-
topy group 72(S?) € Z [1,2]. Since the configuration for the
ferromagnetic state corresponds to a trivial component, a
smooth collapse of the MS cannot be realized without over-
coming the energy barrier. The latter underlies to the prac-
tical interest in the study of MS as potential objects for the
implementation of the element base of magnetic memory
devices, spintronics and superconducting electronics [3-5].

A quantitative characteristic that makes it possible to
determine whether MS belongs to certain homotopy classes
is the topological charge Q, defined in terms of the
magnetization field as [1,2]:
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The most studied are skyrmions with |Q| = 1, however, in
recent years, studies of more exotic MS with different values
of O have significantly intensified, namely: higher-order
skyrmions [6,7], skyrmion bags [8-12], biscyrmions [13],
and so on. Among the noted structures, higher-order mag-
netic skyrmions (HOMS) are vortices whose magnetization
field can be parameterized in terms of the skyrmion angle
O(r) as:

my = sin O(r) cos ng;

my =sinO(r)sinng; m; =cosO(r). (2)

Here r and ¢ are radial and angular variables of the polar
coordinate system on the film with the origin coinciding
with the center of the skyrmion; n is the vorticity of the
HOMS related with the topological charge by the ratio
n = —0Q. Thus, HOMS with different values of n belong
to different homotopy classes, are metastable configurations,
and cannot transform into each other without overcoming
the energy barrier — the greater the larger the size
of HOMS.

The chiral Dzyaloshinskii—Moriya interaction (D—M) is
most actively studied among the mechanisms of stabilization
of magnetic skyrmions [14]. However, in the case of
HOMS with |n| > 1, the latter makes a zero contribution
to the magnetic energy functional. In addition to the D—M
interaction, other mechanisms were considered, caused, for
example, by the magnetostatic interactions [7,15], frustrated
exchange links [6,16] or hybridization of localized magnetic
moments with collectivized electrons [13,17]. An analy-
tical profiles was also proposed for a system of several
magnetic vortices, including those carrying a topological
charge |Q| > 1, in planar nanostructures with an arbitrary
boundary shape [18].

Recently, the authors proposed an additional mechanism
for the stabilization of HOMS with || > 1 due to the orbital
effects of inhomogeneous magnetic fields [19-21]. As the
latter, we considered the stray fields of the Pearl vortex
(PV). In the case of coaxial configurations with coincident
coordinates of the centers of the HOMS and the Pearl
vortex, an analytical theory of bound states was developed
and it was demonstrated that for strongly correlated systems,
the contribution of the orbital terms to the energy of the
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HOMS can be comparable to the contribution from the
D—M interaction [19,20]. Later, it was shown [21] that
orbital effects allow for the stabilization of non-coaxial
configurations by analogy with the case of coupled pairs of
PV—MS with |Q| = 1 (stabilized by the D—M interaction),
studied in detail in a series of recent papers [22-25]. It
has been shown that non-coaxial coupled configurations
of the PV-HOMS are always appear in the simplest case
n =2 [20].

On the other hand, a qualitative analysis of the Zeeman
and orbital contributions to the magnetic functional, partially
carried out in Ref. [21], shows that HOMS with n > 2 can
potentially form coaxial configurations. The latter, in turn,
can become a platform for the implementation of Majorana
bound states on magnetic skyrmions [26-31]. This paper
studies the conditions for stabilization of coupled pairs of
PV—HOMS with n > 2 due to the orbital effects of PV stray
fields and shows the possibility of implementing coaxial
bound states.

2. HOMS energy functional in the Pearl
vortex scattering field

We will consider the conditions for the forma-
tion of HOMS in hybrid two-dimensional superconduc-
tor/ferromagnetic structures within the framework of the
following classical magnetic functional on a triangular
lattice:

H=="T-8 S+ > K-S -[S, xS
(f.8) (f.g:.1)€A

~BY S;—AY (S;) 3)
f f

Here Sy are classical three-component vectors on the site f.
The first term of the right side (3) describes the exchange
interaction of the ferromagnetic type, 7 > 0, between
neighboring sites f and g. The second term describes the
three-spin interaction between the three nearest sites f, g
and /, forming a minimal plaque A on a triangular lattice. It
is also called scalar chiral interaction (SCI). The parameter
A > 0 describes a single-ion anisotropy of the type ,.easy
axis“, 9B is the strength of an external magnetic field
expressed in energy units directed along the quantization
axis z perpendicular to the film.

A spin Hamiltonian of type (3) can be obtained by
considering effective interactions in two-dimensional Mott-
Hubbard insulators [19,32,33]. In this case, the term
oc 7 has the meaning of a superexchange interaction,
and the terms oc A and oc B8 describe the orbital and
Zeeman effects of an external magnetic field, respectively.
In this case, the inhomogeneous amplitude K{f, g,1) is
determined by the magnetic flux ®, through the triangular
plaquet A. The term with easy axis anisotropy cc A can be
caused both by crystal field effects and effectively induced
by dipole—dipole interactions for skyrmions of sufficiently

large spatial dimensions [22,34,35]. It has been shown that
in the regime of strong electronic correlations, a hierarchy
of effective interaction amplitudes is realized, 7 > A "> /7,
which we will continue to adhere to.

When describing the Pearl vortex, we will assume
that the parameter of its effective length A significantly
exceeds the characteristic sizes of the skyrmion. Ac-
cordingly, when describing the interaction between su-
perconducting and magnetic vortices, we will take into
account only the influence of the former on the latter,
ignoring the reverse influence. = We also neglect the
superconducting proximity effect, considering that PV acts
on magnetic skyrmions only through inhomogeneous stray
fields: H(p, @,z — 0.) =H (0)-e, +H,(p) -e,. Here-
after, p = [(x —x0)? + (y —y0)?]"/? is used to denote a
radial variable of the polar coordinate system with the
origin coinciding with the center of the Pearl vortex,
(x0,y0) = —(a - cos¢o, a -singy) (see Figure 1). The
radial dependence of the components H,/, is determined
by the expressions [25,36-38]:
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sy ®Po / qJo.1(qp)
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where the multiplier si; = +1 determines the mutual direc-
tions of the vortex field and the saturation magnetization of
the film, @y is the quantum of the magnetic flux. When
writing (4) we assumed that the sizes of the vortex core &
are negligible compared to the characteristic sizes of the
skyrmion and the Pearl vortex.

We will consider the issue of stabilization of the HOMS
in an inhomogeneous field within the framework of a
variational approach for the continuum version of the
classical functional (3). We will consider a two-parameter
ansatz of the skyrmion angle as a trial function describing
the formation of the HOMS [39]:

(5)

O(r, R, w) = 2arctan <M) .

sinhr/w

Such parametrization, together with (2), makes sense of an
axially symmetric 1D domain wall, where w is its width,
R is the distance from the center of the skyrmion to its
middle. All distances are measured in units of the lattice
parameter. Next, we will assume that the centers of the
PV and the HOMS can be shifted relative to each other,
and their relative position is parameterized by the polar
variables — the distance a < 1 between the centers and
the angle ¢o. The visualization of the spatial profile of the
HOMS with n = 2, constructed using (2) and (5), as well
as the geometry of the relative position of the HOMS and
PV are shown in Figure 1. It is important to emphasize that
when analyzing non-coaxial configurations, we did not take
into account the distortion of skyrmion profiles by radial
components H, of the Pearl vortex field [23-25]. It should
be also noted that the introduction to parameterizations (2)
an additional parameter of the skyrmion helicity x in the
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Figure 1. @ — Spatial profile of a high-order magnetic skyrmion with n = 2. The arrows visualize the projection of the magnetization
field m(r) onto the film plane XoY. The colors correspond to the values of the magnetization projection in accordance with the color code
shown on the right. 5 — Geometry of the relative position of the superconducting Pearl vortex and the HOMS with n = 2. The energy
of a pair of PV and HOMS depends on the distance between their centers, and on the angle ¢y, which determines the mutual orientation

of the centers.

presented consideration would lead to a renormalization of
the angle @g, and therefore we chose y = 0 as the helicity
origin point.

Assuming that the sizes of the skyrmion significantly
exceed the lattice parameter R, w > 1, we can proceed
to a continuous description of the functional (3). In
this approximation, the excitation energy of the HOMS
over the ferromagnetic state, m, = 1, is described by the
functional E[m] = E; + E4 + Ex + Ez with the following
energy contributions [19,21]:

E; = \/§2Sz,7/ Z (Vmy,)?ds,

R, H=XY2
_72 _m2 S
Br= e / (1= m)ds. ©
om om
Ex=S [ K(r—rxo])- (m-|— x —| |ds, (7)
ot (o 2]
Ey— 25%‘3 /(HZ—H(|r—r0|)-m)-ds, 8)

R,
where |m| =1, V = (3/dx, 3/9y,0), ds =dx Ndy, ro =
= —(a - cos @y, a -singy, 0).
The orbital effects of the PV stray fields are contained in
the term Ex (8), which describes the scalar chiral interaction
with an inhomogeneous core:

K(|r —ro|) = K - sin(a®@a(|r — ro|)/Do). 9)

The coefficient K. = ? KS? will be referred to as the
amplitude of the SCI hereinafter. When modeling the
HOMS with n = 3, 4, we will study both the lattice version
of the functional (3) and the continuum version (6)—(8), in

Physics of the Solid State, 2025, Vol. 67, No. 7

which the derivatives will be numerically approximated by
a difference scheme on a square grid, the step of which is
significantly less than R and w. At the same time, in the
continuum limit, we assumed that ®, = v/3H, (r)/4.

Under conditions of the dominance of the exchange
contribution, E; > Ex, Ez, E4, there is a relationship
between the radius and width of the HOMS domain
wall, R ~ nw [19]. The contributions, E; + E4, which do
not depend on the relative position of the HOMS and
PV, tend to collapse the skyrmion, i.e., they correspond
to the optimal R — 0. Taking into account the scalar
chiral interaction Ex can, however, stabilize the finite-radius
HOMS, for example, in the regime K >0, n> 1 and
sy = —1. The latter corresponds to the case when the
field of the Pearl vortex is counter-directed to the saturation
magnetization of the film away from the skyrmion, which
we will further consider. At the same time, taking into
account small Zeeman corrections E; can significantly
modify the optimal sizes of skyrmions.

Due to the dependence of the orbital and Zeeman
terms (7)—(8) on the coordinate of the center of the
PV ro, the energy functional of the HOMS depends on
the polar variables ro and ¢y (see Figure 1,5). In this
case, the derivatives dEz/da and dEz/d¢g are proportional,
respectively, to the radial and azimuthal components of the
resultant ponderomotor forces acting on the HOMS. As
it was shown in Ref [21], n— 1 values of angle ¢ are
identified at n > 1:

1+2m
n—1

o8 = (l—i- )ﬂ(m0d2f[), meZ (11)
for which the forces act along radial directions, dE/d¢o = O,
and the Zeeman contribution from the radial components
of the Pearl field — directed along the film is negative,
Eg)(a) < 0. Further, we will consider the behavior of the
functional E(a) along such directions.
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Figure 2. Dependences of a/R, R and w/R on the values of the anisotropy constants and scalar chiral interaction for the continuum

model at n = 3.

The behavior of the functional E(a) is determined both
by the explicit dependence of the partial contributions on
the parameter a and by the dependence of the radius of
the skyrmion on the distance, R = R(a). It was shown
in Ref [21] that although the latter dependence can lead
to a significant redistribution of partial contributions from
different interactions to the functional, certain trends in the
behavior of the system can be understood from the analysis
of only the explicit dependence E(a). Such an analysis,
partially contained in Refs. [19-21], shows the following
features of the behavior of partial contributions in E(a). The
contribution from the Zeeman field components transverse

to the film, Eé”, does not depend on the vorticity index n,

and for small a increases as Eéz)|u<<R ~ —Bo + B.a’?, where
B. > 0. The behavior of contributions related to the orbital
effects Eg, as well as to the Zeeman effects Eé” on the
longitudinal Zeeman components of the Pearl vortex field
already depends on n. So, in the case of n > 1, the behavior
of Ex(a) at small a is similar to the behavior of Eg). Thus,

the contributions to the functionality of Ex and Eg) show
a tendency to form a coaxial bound pair of PV—HOMS.

At the same time, the negative contribution Eé” oca" !
from the longitudinal components of the field is expected
to be suppressed at n >> 1. Thus, for HOMS with large |Q|,
the possibility of forming coaxial bound pairs with PV is
expected. Numerical calculations show that the case n > 1
actually occurs for n > 5.

For the HOMS with 1 <n <5, the case n=2 is
singled out separately, in which Eér)|a<<R ~ —C -a with a
coefficient C > 0. Considering the above about the behavior
of Ek(a) and Eéz)(a), the latter means that the energy
of the bound pair PV-HOMS with n = 2 decreases with
increasing a, and therefore the coaxial configurations are
not implemented. It is important to note here that the
degree of dependence of Ex(a) — Ex(0) < a® on ax = 2,
typical for n > 1, may differ for n = 2. However, numerical
calculations have shown that ax does not turn out to
be less than or equal to one, and the conclusion about
the absence of coaxial pairs PV-HOMS with n =2 is
not violated. When n = 3, 4, the competition of effects
from the longitudinal and transverse components of the
Pearl field becomes more complicated, and it is difficult
to obtain analytical estimates for partial contributions to the
functional, even ignoring the dependencies R(a) and w(a).
Therefore, the further analysis of the HOMS with n = 3, 4
was conducted numerically.

3. Bound states of PV—-HOMS
with n = 3, 4

We performed numerical calculations of the continuum
version of the functional (6)—(8) on a square grid to identify
the main trends in the behavior of a bound pair PV-HOMS
with n = 3. The main analysis was carried out under the
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Figure 3. Dependences of the skyrmion energy on the displacement value for parameters corresponding to the three points @, b and ¢ in
Figure 2, a. The optimization of the HOMS size was also carried out when calculating dotted lines concurrently with finding the energy
as a function a. The dashed lines are calculated at fixed values of R and w, obtained at a = 0.

assumption that the optimal sizes of the skyrmion, R(a)
and w(a), can change with distance from the Pearl vortex:
the minimization of the functional E(R, w, a) was carried
out for each defined value a. However, for completeness,
calculations were also carried out under the assumption
that the optimal sizes of the HOMS are determined by the
functional in the coaxial configuration, and do not change
with an increase of the distance from PV. At the same
time, in the continuum approximation, it has always been
assumed that the grid step is § < R, w.

As mentioned above, the regime E; > Ex, Ez, E4 sets
the relationship R ~ nw, clearly demonstrated in Figure 2, ¢
for the case n = 3. In addition, since the tendency for the
shift of the HOMS is formed due to the interaction of the
radial components of the PV with the skyrmion domain
wall in the vicinity of the radius R, it is obvious that the
nonzero optimal values of the displacement parameter will
be proportional to the radius of the skyrmion a o« R/2.
Thus, to analyze the degree of coaxiality of the bound pairs
of PV—HOMS, as well as the sizes of the HOMS, it is
sufficient to analyze the values of a/R and R, respectively.

The dependences calculated in the continuum approxi-
mation, a/R and R for HOMS with n = 3 on the energy
parameters of single-ion anisotropy A and scalar chiral
interaction K. are shown in Figure 2. It can be seen that
the size of the skyrmion decreases rapidly with increasing
anisotropy, R o« A~¢, and increases slowly with increasing
intensity of the scalar chiral interaction, R Kf . It can
be seen that the eccentric configurations with a/R o 0.5
correspond to skyrmions of large radii, R > 1, whereas with
a decrease in the size of the skyrmions, there is a tendency
to form coaxial configurations. The latter can be determined
by the condition that the displacement parameter a becomes
smaller than the grid step.

From the consideration of the dependencies in Figure 2, a
and 2, b, it can be seen that in the continuum approximation,
the formation of coaxial coupled pairs of PV—HOMS
with n =3 is possible, however, this occurs when the
skyrmion sizes R ~ 10, w ~ 3, for which the continuum
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approximation turns out to be inapplicable. To clearly
demonstrate this statement, Figure 3 shows the dependences
of the energy of the HOMS E on the distance a for three
different sets of parameters corresponding to the points a, b
and ¢ in Figure 2,a. It can be seen that the non-coaxial
configurations a and b correspond to sufficiently large
HOMS, and the coaxial case c¢ corresponds to skyrmions
with sizes that are insufficiently small for a continuous
description. Thus, the calculations given in the continuum
approximation allow seeing the tendency of the HOMS with
n =3 to form a coaxial coupled pair with the PV, but do
not guarantee its formation.

For a more detailed study of the possibility of the
formation of coaxial coupled pairs, we calculated the same
dependences a/R, R and w/R, but within the framework
of the lattice functional (3). The calculation results in the
narrower range of the parameters A and K, are shown in
Figure 4. In this case, the ratio R ~ nw is still fulfilled,
however, there are critical parameter lines at which the
HOMS with n =3 collapse without reaching a coaxial
state due to the small size and discreteness of the lattice.

Thus, although in the case of bound pairs of PV-HOMS
with n = 3 the continuum limit allows for a coaxial pairs, it
corresponds to skyrmions of such small sizes that the actual
ones are unstable when taking into account the effects of
lattice discreteness. As a result, for the hierarchy of energy
contributions we are studying E; > Ex, Ez, Ey4, it can be
argued that in the case of n =3 only non-coaxial bound
pairs are realized, as in the case of n = 2.

Next, we examined the behavior of the pairs of
PV—-HOMS with n = 4. The results of calculations of the
dependence E(a), similar to those shown in Figure 3, are
presented in Figure 5 for two sets of system parameters.
From their consideration, it can be seen that in the case
of n =4, coaxial bound states are implemented. We
observed such a configuration for all the parameters under
consideration, even with small values of the three-spin
interaction. The explanation for this effect is a slower
increase in the dependence of the negative contribution to
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Figure 5. Dependences of the skyrmion energy on the displacement value for n = 4. The dots correspond to the energy minimization at
a given a by the size of the skyrmion R, w, dashed line corresponds to the energy dependence at fixed R, w obtained for a = 0.

the Zeeman energy on the radial component of the field
on the magnitude of the displacement a compared to the
positive growth from terms describing the perpendicular
component already at n = 4. At the same time, with an
increase in the intensity of the scalar chiral interaction,
the severity of the minimum dependence E(a) at a =0
increases. Considering the above, the behavior of dependen-

cies EY)(a), EY)(a) and Ex(a) is expected to implement

coaxial pairs for n > 4.

4. Conclusion

The possibility of stabilization in thin superconduc-
tor/chiral magnet heterostructures of coaxial pairs of a
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Pearl vortex and high-order magnetic skyrmions with small
topological charges n was studied in this paper. The
main mechanism of stabilization was considered to be the
competition of exchange interaction, easy-axial single-ion
anisotropy, as well as the orbital and Zeeman effects of
vortex scattering fields. At the same time, we considered the
regime of dominance of the exchange coupling in magnetic
films, in comparison with other magnetic interactions. In
this regime, the characteristic dimensions of skyrmions —
their radius and the width of the domain wall — turn out
to be related to the topological charge R ~ nw. Candidates
for the considered system are layered strongly correlated
compounds in which magnetic interactions occur due to
indirect exchange, for example, transition metals 3d and
rare earth metals 4f [40].

The described formulation of the study is a natural
continuation of Ref. [21], which focused on the HOMS
with n =2 and n>> 1. Thus, it follows from the analysis
that for the simplest HOMS with n = 2 eccentric coupled
pairs are always realized, whereas for HOMS with n > 1 it
is possible, and even expected, the formation of coaxial
pairs, the analytical theory for which was developed in
Refs. [19,20]. In the intermediate case, the competition of
the effects of the longitudinal and transverse components
of the Pearl vortex field on the HOMS becomes more
complicated, and crossovers between different regimes can
occur with minor changes in the energy parameters of
the system. Therefore, we studied the analysis of the
possibilities of implementing coaxial bound pairs for HOMS
with n = 3,4 numerically.

We have demonstrated that in the case of n =3 and
n =4, skyrmions can also stabilize in the fields of the
Pearl vortex due to orbital effects. In the case with n = 3,
although there is a tendency to switch to the coaxial regime
with an increase in the anisotropy parameters and the
magnitude of the three-spin interaction, however, this occurs
at parameters at which the HOMS can no longer be stable
due to its small size. Therefore, an eccentric coupled pair of
HOMS with a Pearl vortex is actually realized for n = 3 as
in the case of n = 2. In the case of the HOMS with n = 4,
a coaxial configuration with a Pearl vortex is implemented,
and it is expected that this situation will persist for n > 4.

In conclusion, we note that this study is predictive in
nature, since there are currently no data from numerical
and physical experiments to verify our results. Thus,
in recent experimental studies, high-order skyrmions with
|Q] > 1 [7] and coupled pairs of magnetic skyrmion with
|O] =1 — superconducting vortex(antivortex) have been
studied separately [41,42]. As far as we know, the
coupled pairs of the Pearl vortex—HOMS with |Q| > 1 have
not been experimentally studied. The lack of numerical
experimental data is due to the fact that standard magnetic
modeling packages (for example, OOMMEF [34]) are not
optimized for calculating the scalar chiral interaction.
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