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Within the framework of the magnetic energy functional of the hybrid 2D structure superconductor-chiral magnet,

which takes into account: exchange interaction, single-ion anisotropy, as well as orbital and Zeeman effects of the

Pearl vortex scattering fields, the stabilization conditions of higher-order magnetic skyrmions with topological

charges |Q| = 3, 4 are studied. In contrast to the case of |Q| = 2, studied earlier [JETP Letters 120, 539−546

(2024)], skyrmions with higher |Q| do not necessarily form non-axial configurations of a bound pair with a Pearl

vortex. Moreover, for skyrmions with |Q| = 3, the competition of interactions in the continuum limit allows for

different degrees of coaxiality, however, the coaxial configuration cannot be stabilized on a real discrete lattice due

to the small size of the skyrmions. Skyrmions with |Q| = 4 form stable coaxial pairs with a Pearl vortex.
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1. Introduction

Two-dimensional magnetic skyrmions (MS) are locali-

zed vortex-like configurations for which the magnetization

field m(r) belongs to a nontrivial component of the homo-

topy group π2(S
2) ∈ Z [1,2]. Since the configuration for the

ferromagnetic state corresponds to a trivial component, a

smooth collapse of the MS cannot be realized without over-

coming the energy barrier. The latter underlies to the prac-

tical interest in the study of MS as potential objects for the

implementation of the element base of magnetic memory

devices, spintronics and superconducting electronics [3–5].
A quantitative characteristic that makes it possible to

determine whether MS belongs to certain homotopy classes

is the topological charge Q, defined in terms of the

magnetization field as [1,2]:

Q =
1

4π

∫

R2

(

m ·
[

∂m

∂x
× ∂m

∂y

])

d2r, (1)

The most studied are skyrmions with |Q| = 1, however, in

recent years, studies of more exotic MS with different values

of Q have significantly intensified, namely: higher-order

skyrmions [6,7], skyrmion bags [8–12], biscyrmions [13],
and so on. Among the noted structures, higher-order mag-

netic skyrmions (HOMS) are vortices whose magnetization

field can be parameterized in terms of the skyrmion angle

2(r) as:

mx = sin2(r) cos nϕ;

my = sin2(r) sin nϕ; mz = cos2(r). (2)

Here r and ϕ are radial and angular variables of the polar

coordinate system on the film with the origin coinciding

with the center of the skyrmion; n is the vorticity of the

HOMS related with the topological charge by the ratio

n = −Q. Thus, HOMS with different values of n belong

to different homotopy classes, are metastable configurations,

and cannot transform into each other without overcoming

the energy barrier — the greater the larger the size

of HOMS.

The chiral Dzyaloshinskii−Moriya interaction (D−M) is

most actively studied among the mechanisms of stabilization

of magnetic skyrmions [14]. However, in the case of

HOMS with |n| > 1, the latter makes a zero contribution

to the magnetic energy functional. In addition to the D−M

interaction, other mechanisms were considered, caused, for

example, by the magnetostatic interactions [7,15], frustrated
exchange links [6,16] or hybridization of localized magnetic

moments with collectivized electrons [13,17]. An analy-

tical profiles was also proposed for a system of several

magnetic vortices, including those carrying a topological

charge |Q| > 1, in planar nanostructures with an arbitrary

boundary shape [18].
Recently, the authors proposed an additional mechanism

for the stabilization of HOMS with |n| > 1 due to the orbital

effects of inhomogeneous magnetic fields [19–21]. As the

latter, we considered the stray fields of the Pearl vortex

(PV). In the case of coaxial configurations with coincident

coordinates of the centers of the HOMS and the Pearl

vortex, an analytical theory of bound states was developed

and it was demonstrated that for strongly correlated systems,

the contribution of the orbital terms to the energy of the
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HOMS can be comparable to the contribution from the

D−M interaction [19,20]. Later, it was shown [21] that

orbital effects allow for the stabilization of non-coaxial

configurations by analogy with the case of coupled pairs of

PV−MS with |Q| = 1 (stabilized by the D−M interaction),
studied in detail in a series of recent papers [22–25]. It

has been shown that non-coaxial coupled configurations

of the PV−HOMS are always appear in the simplest case

n = 2 [20].
On the other hand, a qualitative analysis of the Zeeman

and orbital contributions to the magnetic functional, partially

carried out in Ref. [21], shows that HOMS with n > 2 can

potentially form coaxial configurations. The latter, in turn,

can become a platform for the implementation of Majorana

bound states on magnetic skyrmions [26–31]. This paper

studies the conditions for stabilization of coupled pairs of

PV−HOMS with n > 2 due to the orbital effects of PV stray

fields and shows the possibility of implementing coaxial

bound states.

2. HOMS energy functional in the Pearl
vortex scattering field

We will consider the conditions for the forma-

tion of HOMS in hybrid two-dimensional superconduc-

tor/ferromagnetic structures within the framework of the

following classical magnetic functional on a triangular

lattice:

H = −
∑

〈 f ,g〉
I · S f · Sg +

∑

〈 f ,g,l〉∈1

K · S f · [Sg × Sl]

−B

∑

f

Sz
f −A

∑

f

(Sz
f )

2 (3)

Here S f are classical three-component vectors on the site f .

The first term of the right side (3) describes the exchange

interaction of the ferromagnetic type, I > 0, between

neighboring sites f and g . The second term describes the

three-spin interaction between the three nearest sites f , g

and l, forming a minimal plaque 1 on a triangular lattice. It

is also called scalar chiral interaction (SCI). The parameter

A > 0 describes a single-ion anisotropy of the type
”
easy

axis“, B is the strength of an external magnetic field

expressed in energy units directed along the quantization

axis z perpendicular to the film.

A spin Hamiltonian of type (3) can be obtained by

considering effective interactions in two-dimensional Mott-

Hubbard insulators [19,32,33]. In this case, the term

∝ I has the meaning of a superexchange interaction,

and the terms ∝ K and ∝ B describe the orbital and

Zeeman effects of an external magnetic field, respectively.

In this case, the inhomogeneous amplitude K( f , g, l) is

determined by the magnetic flux 81 through the triangular

plaquet 1. The term with easy axis anisotropy ∝ A can be

caused both by crystal field effects and effectively induced

by dipole−dipole interactions for skyrmions of sufficiently

large spatial dimensions [22,34,35]. It has been shown that

in the regime of strong electronic correlations, a hierarchy

of effective interaction amplitudes is realized, I ≫ K ≫ A,

which we will continue to adhere to.

When describing the Pearl vortex, we will assume

that the parameter of its effective length λ significantly

exceeds the characteristic sizes of the skyrmion. Ac-

cordingly, when describing the interaction between su-

perconducting and magnetic vortices, we will take into

account only the influence of the former on the latter,

ignoring the reverse influence. We also neglect the

superconducting proximity effect, considering that PV acts

on magnetic skyrmions only through inhomogeneous stray

fields: H(ρ, ϕ, z → 0+) = Hz (ρ) · ez + Hρ(ρ) · eρ . Here-

after, ρ = [(x − x0)
2 + (y − y0)

2]1/2 is used to denote a

radial variable of the polar coordinate system with the

origin coinciding with the center of the Pearl vortex,

(x0, y0) = −(a · cosφ0, a · sinφ0) (see Figure 1). The

radial dependence of the components Hz /ρ is determined

by the expressions [25,36–38]:

Hz /ρ(ρ) =
sH80

2π

∞
∫

0

qJ0,1(qρ)

1 + 2qλ
dq ∼= sH80

4πλ

1

ρ
, (4)

where the multiplier sH = ±1 determines the mutual direc-

tions of the vortex field and the saturation magnetization of

the film, 80 is the quantum of the magnetic flux. When

writing (4) we assumed that the sizes of the vortex core ξ

are negligible compared to the characteristic sizes of the

skyrmion and the Pearl vortex.

We will consider the issue of stabilization of the HOMS

in an inhomogeneous field within the framework of a

variational approach for the continuum version of the

classical functional (3). We will consider a two-parameter

ansatz of the skyrmion angle as a trial function describing

the formation of the HOMS [39]:

2(r, R, w) = 2 arctan

(

coshR/w

sinh r/w

)

. (5)

Such parametrization, together with (2), makes sense of an

axially symmetric 1D domain wall, where w is its width,

R is the distance from the center of the skyrmion to its

middle. All distances are measured in units of the lattice

parameter. Next, we will assume that the centers of the

PV and the HOMS can be shifted relative to each other,

and their relative position is parameterized by the polar

variables — the distance a ≪ λ between the centers and

the angle ϕ0. The visualization of the spatial profile of the

HOMS with n = 2, constructed using (2) and (5), as well

as the geometry of the relative position of the HOMS and

PV are shown in Figure 1. It is important to emphasize that

when analyzing non-coaxial configurations, we did not take

into account the distortion of skyrmion profiles by radial

components Hρ of the Pearl vortex field [23–25]. It should
be also noted that the introduction to parameterizations (2)
an additional parameter of the skyrmion helicity χ in the
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Figure 1. a — Spatial profile of a high-order magnetic skyrmion with n = 2. The arrows visualize the projection of the magnetization

field m(r) onto the film plane XoY . The colors correspond to the values of the magnetization projection in accordance with the color code

shown on the right. b — Geometry of the relative position of the superconducting Pearl vortex and the HOMS with n = 2. The energy

of a pair of PV and HOMS depends on the distance between their centers, and on the angle ϕ0, which determines the mutual orientation

of the centers.

presented consideration would lead to a renormalization of

the angle ϕ0, and therefore we chose χ = 0 as the helicity

origin point.

Assuming that the sizes of the skyrmion significantly

exceed the lattice parameter R, w ≫ 1, we can proceed

to a continuous description of the functional (3). In

this approximation, the excitation energy of the HOMS

over the ferromagnetic state, mz ≡ 1, is described by the

functional E[m] = EJ + EA + EK + EZ with the following

energy contributions [19,21]:

EJ =

√
3S2

I

2

∫

R2

∑

µ=x ,y,z

(∇mµ)
2ds,

EA =
2√

3S2A

∫

R2

(1− m2
z )ds, (6)

EK = S3

∫

R2

K (|r− r0|) ·
(

m ·
[

∂m

∂x
× ∂m

∂y

])

ds, (7)

EZ =
2SgµB√

3

∫

R2

(Hz − H(|r− r0|) ·m) · ds, (8)

where |m| = 1, ∇ = (∂/∂x , ∂/∂y, 0), ds = dx ∧ dy , r0 =
= −(a · cosϕ0, a · sinφ0, 0).
The orbital effects of the PV stray fields are contained in

the term EK (8), which describes the scalar chiral interaction

with an inhomogeneous core:

K(|r− r0|) = K · sin
(

π81(|r− r0|)/80

)

. (9)

The coefficient Kc =
√
3
4

KS3 will be referred to as the

amplitude of the SCI hereinafter. When modeling the

HOMS with n = 3, 4, we will study both the lattice version

of the functional (3) and the continuum version (6)−(8), in

which the derivatives will be numerically approximated by

a difference scheme on a square grid, the step of which is

significantly less than R and w . At the same time, in the

continuum limit, we assumed that 81 =
√
3Hz (r)/4.

Under conditions of the dominance of the exchange

contribution, EJ ≫ EK , EZ , EA, there is a relationship

between the radius and width of the HOMS domain

wall, R ∼ nw [19]. The contributions, EJ + EA, which do

not depend on the relative position of the HOMS and

PV, tend to collapse the skyrmion, i. e., they correspond

to the optimal R → 0. Taking into account the scalar

chiral interaction EK can, however, stabilize the finite-radius

HOMS, for example, in the regime K > 0, n > 1 and

sH = −1. The latter corresponds to the case when the

field of the Pearl vortex is counter-directed to the saturation

magnetization of the film away from the skyrmion, which

we will further consider. At the same time, taking into

account small Zeeman corrections EZ can significantly

modify the optimal sizes of skyrmions.

Due to the dependence of the orbital and Zeeman

terms (7)−(8) on the coordinate of the center of the

PV r0, the energy functional of the HOMS depends on

the polar variables r0 and ϕ0 (see Figure 1, b). In this

case, the derivatives ∂EZ/∂a and ∂EZ/∂φ0 are proportional,

respectively, to the radial and azimuthal components of the

resultant ponderomotor forces acting on the HOMS. As

it was shown in Ref. [21], n − 1 values of angle φ0 are

identified at n > 1:

φn
0 =

(

1 +
1 + 2m

n − 1

)

π(mod 2π), m ∈ Z (11)

for which the forces act along radial directions, ∂E/∂φ0 = 0,

and the Zeeman contribution from the radial components

of the Pearl field — directed along the film is negative,

E
(r)
Z (a) < 0. Further, we will consider the behavior of the

functional E(a) along such directions.
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Figure 2. Dependences of a/R, R and w/R on the values of the anisotropy constants and scalar chiral interaction for the continuum

model at n = 3.

The behavior of the functional E(a) is determined both
by the explicit dependence of the partial contributions on

the parameter a and by the dependence of the radius of
the skyrmion on the distance, R = R(a). It was shown

in Ref. [21] that although the latter dependence can lead

to a significant redistribution of partial contributions from
different interactions to the functional, certain trends in the

behavior of the system can be understood from the analysis
of only the explicit dependence E(a). Such an analysis,

partially contained in Refs. [19–21], shows the following

features of the behavior of partial contributions in E(a). The
contribution from the Zeeman field components transverse

to the film, E
(z )
Z , does not depend on the vorticity index n,

and for small a increases as E
(z )
Z |a≪R ∼ −β0 + βz a2, where

βz > 0. The behavior of contributions related to the orbital

effects EK , as well as to the Zeeman effects E
(r)
Z on the

longitudinal Zeeman components of the Pearl vortex field
already depends on n. So, in the case of n ≫ 1, the behavior

of EK(a) at small a is similar to the behavior of E
(z )
Z . Thus,

the contributions to the functionality of EK and E
(z )
Z show

a tendency to form a coaxial bound pair of PV−HOMS.

At the same time, the negative contribution E
(r)
Z ∝ an−1

from the longitudinal components of the field is expected
to be suppressed at n ≫ 1. Thus, for HOMS with large |Q|,
the possibility of forming coaxial bound pairs with PV is
expected. Numerical calculations show that the case n ≫ 1

actually occurs for n ≥ 5.

For the HOMS with 1 < n < 5, the case n = 2 is

singled out separately, in which E
(r)
Z |a≪R ∼ −C · a with a

coefficient C > 0. Considering the above about the behavior

of EK(a) and E
(z )
Z (a), the latter means that the energy

of the bound pair PV−HOMS with n = 2 decreases with

increasing a , and therefore the coaxial configurations are

not implemented. It is important to note here that the
degree of dependence of EK(a) − EK(0) ∝ aαK on αK = 2,

typical for n ≫ 1, may differ for n = 2. However, numerical

calculations have shown that αK does not turn out to

be less than or equal to one, and the conclusion about

the absence of coaxial pairs PV−HOMS with n = 2 is

not violated. When n = 3, 4, the competition of effects

from the longitudinal and transverse components of the

Pearl field becomes more complicated, and it is difficult

to obtain analytical estimates for partial contributions to the

functional, even ignoring the dependencies R(a) and w(a).
Therefore, the further analysis of the HOMS with n = 3, 4

was conducted numerically.

3. Bound states of PV−HOMS
with n = 3, 4

We performed numerical calculations of the continuum

version of the functional (6)−(8) on a square grid to identify

the main trends in the behavior of a bound pair PV−HOMS

with n = 3. The main analysis was carried out under the
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Figure 3. Dependences of the skyrmion energy on the displacement value for parameters corresponding to the three points a, b and c in

Figure 2, a. The optimization of the HOMS size was also carried out when calculating dotted lines concurrently with finding the energy

as a function a . The dashed lines are calculated at fixed values of R and w, obtained at a = 0.

assumption that the optimal sizes of the skyrmion, R(a)
and w(a), can change with distance from the Pearl vortex:

the minimization of the functional E(R, w, a) was carried

out for each defined value a . However, for completeness,

calculations were also carried out under the assumption

that the optimal sizes of the HOMS are determined by the

functional in the coaxial configuration, and do not change

with an increase of the distance from PV. At the same

time, in the continuum approximation, it has always been

assumed that the grid step is δ ≪ R, w .

As mentioned above, the regime EJ ≫ EK , EZ , EA sets

the relationship R ∼ nw, clearly demonstrated in Figure 2, c

for the case n = 3. In addition, since the tendency for the

shift of the HOMS is formed due to the interaction of the

radial components of the PV with the skyrmion domain

wall in the vicinity of the radius R, it is obvious that the

nonzero optimal values of the displacement parameter will

be proportional to the radius of the skyrmion a ∝ R/2.

Thus, to analyze the degree of coaxiality of the bound pairs

of PV−HOMS, as well as the sizes of the HOMS, it is

sufficient to analyze the values of a/R and R, respectively.

The dependences calculated in the continuum approxi-

mation, a/R and R for HOMS with n = 3 on the energy

parameters of single-ion anisotropy A and scalar chiral

interaction Kc are shown in Figure 2. It can be seen that

the size of the skyrmion decreases rapidly with increasing

anisotropy, R ∝ A−α, and increases slowly with increasing

intensity of the scalar chiral interaction, R ∝ K
β
c . It can

be seen that the eccentric configurations with a/R ∝ 0.5

correspond to skyrmions of large radii, R ≫ 1, whereas with

a decrease in the size of the skyrmions, there is a tendency

to form coaxial configurations. The latter can be determined

by the condition that the displacement parameter a becomes

smaller than the grid step.

From the consideration of the dependencies in Figure 2, a

and 2, b, it can be seen that in the continuum approximation,

the formation of coaxial coupled pairs of PV−HOMS

with n = 3 is possible, however, this occurs when the

skyrmion sizes R ∼ 10, w ∼ 3, for which the continuum

approximation turns out to be inapplicable. To clearly

demonstrate this statement, Figure 3 shows the dependences

of the energy of the HOMS E on the distance a for three

different sets of parameters corresponding to the points a, b

and c in Figure 2, a. It can be seen that the non-coaxial

configurations a and b correspond to sufficiently large

HOMS, and the coaxial case c corresponds to skyrmions

with sizes that are insufficiently small for a continuous

description. Thus, the calculations given in the continuum

approximation allow seeing the tendency of the HOMS with

n = 3 to form a coaxial coupled pair with the PV, but do

not guarantee its formation.

For a more detailed study of the possibility of the

formation of coaxial coupled pairs, we calculated the same

dependences a/R, R and w/R, but within the framework

of the lattice functional (3). The calculation results in the

narrower range of the parameters A and Kc are shown in

Figure 4. In this case, the ratio R ≈ nw is still fulfilled,

however, there are critical parameter lines at which the

HOMS with n = 3 collapse without reaching a coaxial

state due to the small size and discreteness of the lattice.

Thus, although in the case of bound pairs of PV−HOMS

with n = 3 the continuum limit allows for a coaxial pairs, it

corresponds to skyrmions of such small sizes that the actual

ones are unstable when taking into account the effects of

lattice discreteness. As a result, for the hierarchy of energy

contributions we are studying EJ ≫ EK, EZ, EA, it can be

argued that in the case of n = 3 only non-coaxial bound

pairs are realized, as in the case of n = 2.

Next, we examined the behavior of the pairs of

PV−HOMS with n = 4. The results of calculations of the

dependence E(a), similar to those shown in Figure 3, are

presented in Figure 5 for two sets of system parameters.

From their consideration, it can be seen that in the case

of n = 4, coaxial bound states are implemented. We

observed such a configuration for all the parameters under

consideration, even with small values of the three-spin

interaction. The explanation for this effect is a slower

increase in the dependence of the negative contribution to
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Figure 5. Dependences of the skyrmion energy on the displacement value for n = 4. The dots correspond to the energy minimization at

a given a by the size of the skyrmion R, w, dashed line corresponds to the energy dependence at fixed R, w obtained for a = 0.

the Zeeman energy on the radial component of the field

on the magnitude of the displacement a compared to the

positive growth from terms describing the perpendicular

component already at n = 4. At the same time, with an

increase in the intensity of the scalar chiral interaction,

the severity of the minimum dependence E(a) at a = 0

increases. Considering the above, the behavior of dependen-

cies E
(r)
Z (a), E

(z )
Z (a) and EK(a) is expected to implement

coaxial pairs for n ≥ 4.

4. Conclusion

The possibility of stabilization in thin superconduc-

tor/chiral magnet heterostructures of coaxial pairs of a
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Pearl vortex and high-order magnetic skyrmions with small

topological charges n was studied in this paper. The

main mechanism of stabilization was considered to be the

competition of exchange interaction, easy-axial single-ion

anisotropy, as well as the orbital and Zeeman effects of

vortex scattering fields. At the same time, we considered the

regime of dominance of the exchange coupling in magnetic

films, in comparison with other magnetic interactions. In

this regime, the characteristic dimensions of skyrmions —

their radius and the width of the domain wall — turn out

to be related to the topological charge R ≈ nw . Candidates

for the considered system are layered strongly correlated

compounds in which magnetic interactions occur due to

indirect exchange, for example, transition metals 3d and

rare earth metals 4 f [40].

The described formulation of the study is a natural

continuation of Ref. [21], which focused on the HOMS

with n = 2 and n ≫ 1. Thus, it follows from the analysis

that for the simplest HOMS with n = 2 eccentric coupled

pairs are always realized, whereas for HOMS with n ≫ 1 it

is possible, and even expected, the formation of coaxial

pairs, the analytical theory for which was developed in

Refs. [19,20]. In the intermediate case, the competition of

the effects of the longitudinal and transverse components

of the Pearl vortex field on the HOMS becomes more

complicated, and crossovers between different regimes can

occur with minor changes in the energy parameters of

the system. Therefore, we studied the analysis of the

possibilities of implementing coaxial bound pairs for HOMS

with n = 3, 4 numerically.

We have demonstrated that in the case of n = 3 and

n = 4, skyrmions can also stabilize in the fields of the

Pearl vortex due to orbital effects. In the case with n = 3,

although there is a tendency to switch to the coaxial regime

with an increase in the anisotropy parameters and the

magnitude of the three-spin interaction, however, this occurs

at parameters at which the HOMS can no longer be stable

due to its small size. Therefore, an eccentric coupled pair of

HOMS with a Pearl vortex is actually realized for n = 3 as

in the case of n = 2. In the case of the HOMS with n = 4,

a coaxial configuration with a Pearl vortex is implemented,

and it is expected that this situation will persist for n ≥ 4.

In conclusion, we note that this study is predictive in

nature, since there are currently no data from numerical

and physical experiments to verify our results. Thus,

in recent experimental studies, high-order skyrmions with

|Q| > 1 [7] and coupled pairs of magnetic skyrmion with

|Q| = 1 — superconducting vortex(antivortex) have been

studied separately [41,42]. As far as we know, the

coupled pairs of the Pearl vortex−HOMS with |Q| > 1 have

not been experimentally studied. The lack of numerical

experimental data is due to the fact that standard magnetic

modeling packages (for example, OOMMF [34]) are not

optimized for calculating the scalar chiral interaction.
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