Two-component model of autowave plasticity. Macroscale and invariants of plastic deformation
Zuev L. B.
11Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
Email: lbz@ispms.ru
The structure of a two-component model of localized plasticity and the scenario of the birth of macroscopic scales of plastic flow within its framework are considered. The mechanism of the emergence of a macroscopic autowave scale during the development of plastic deformation is proposed and quantitatively substantiated. The conditions for the stratification of a deformable medium into dynamic and information subsystems are described and their roles in the formation of macroscopic scales of the order of the length of the autowave of localized plasticity are analyzed. The nature of the relationship between the emergence of a macroscopic scale during plastic flow and the elastic-plastic invariant of deformation, previously established experimentally, is explained. Keywords: deformation, plasticity, localization, model, scale, self-organization.
- L.B. Zuev, S.A. Barannikova, V.I. Danilov, V.V. Gorbatenko. Prog. Phys. Met. 22, 1, 3 (2021). https://doi.org/10.15407/ufm.22.01.003
- L.B. Zuev, Yu.A. Khon, V.V. Gorbatenko. Fizika neodnorodnogo plasticheskogo techeniya. Fizmatlit, M. (2024). 316 s. (in Russian)
- L.B. Zuev, Yu.A. Khon. Phys. Mesomech. 28, 5, 1 (2025). DOI: 10/1134/ S10299599224601325
- A. Seeger and W. Frank. Non-linear Phenomena in Material Science. Trans. Tech. Publish., New York (1987). 125 p
- G. Nikolis, I. Prigozhin. Poznanie slozhnogo. Mir, M. (1990). 342 s. (in Russian)
- D. Crisan, M. Ghil, R. Nuckchady. Chaos 35, 5, 053133 (2025). https://doi.org/10.1063/5.0241166
- T. Suzuki, H. Yoshinaga, S. Takeuchi. Dinamika dislokacij i plastichnost'. Mir, M. (1989). 294 s. (in Russian)
- D. Hull, D.J. Bacon. Introduction in Dislocations. Elsevier, Oxford (2011). 272 p
- U. Messerschmidt. Dislocation Dynamics during Plastic Deformation. Springer, Heidel-berg (2010). 503 p. DOI: 10.1007/978-3-642-03177-9
- V.L. Indenbom, A.N. Orlov, Yu.Z. Estrin. Elementarnye protsessy plasticheskoy deformatsii kristallov. Nauk. dumka, Kiev (1978). s. 93-113. (in Russian)
- P.A. Glebovsky, Yu.V. Petrov. FTT 46, 6, 1021 (2004). (in Russian)
- D. Caillard and J.L. Martin. Thermally Activated Mechanisms in Crystal Plasticity. Else-vier, Oxford (2003). 433 p
- B.B. Kadomtsev. Dinamika i informatsiya. Redaktsiya UFN, M. (1997). 399 s. (in Russian)
- A.L. Glazov, K.L. Muratikov. FTT 66, 3, 359 (2024). (in Russian). DOI:1061011/FTT.2024.03.5745.19
- A.L. Glazov, K.L. Muratikov, A.A. Sukharev. FTT 66, 9, 1483 (2024). (in Russian). DOI: 1061011. 2024.58769.208
- D.S. Chernavsky. Sinergetika i informatsiya. URSS, M. (2004). 287 s. (in Russian)
- L.B. Zuev, V.I. Danilov. FTT 64, 8, 1006 (2022). (in Russian). DOI: 10.21883/FTT.2022. 08.52698.311
- D. Blaschke, J. Chen, S. Fensin, B.A. Szajewski. Phil. Mag. A. 101, 8, 997 (2021). https://doi.org/10.1080/14786435.2021.1876269
- L.D. Landau, E.M. Lifshitz. Gidrodinamika. Fizmatlit, Moskva (2001). (in Russian). 736 s. (in Russian)
- L.B. Zuev, S.A. Barannikova. J. Mod. Phys. 1, 1, 1 (2010). DOI: 10.4236/jmp.2010. 11001
- V.V. Brazhkin. UFN 193, 11, 1227 (2023). (in Russian). https://doi.org/1.3367/UFNNr.2022. 11.039261
- L.B. Zuev. Pisma v ZhTF 50, 12, 9 (2024). (in Russian). DOI: 0.61011/PJTF. 2024/1258056.19877
- A.I. Olemskoy. Sinergetika slozhnyh sistem. Krasand, M. (2009). 379 s. (in Russian)
- A.C. Iliopoulos, N.S. Nikolaidis, E.C. Aifantis. Physika A 438, 3, 509 (2015). https:dx.doi.org/10.1016/j.physa.2015.06.007
- J.S. Langer. Adv. Phys. 70, 4, 445 (2021). https://doi.org/10.1080/00018732.2023.2190730
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.