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The structure of a two-component model of localized plasticity and the scenario of the birth of macroscopic
scales of plastic flow within its framework are considered. The mechanism of the emergence of a macroscopic
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flow and the elastic-plastic invariant of deformation, previously established experimentally, is explained.
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1. Introduction

The autowave plasticity theory [1-3] that is currently
being developed is based on the assumptions that the
heterogeneity of deformation, which is an integral sign of
plastic flow, is the result of self-organization of the defective
assembly in the deformed environment. This idea proposed
for the first time by Seger and Franck in paper [4], was
proposed by the statement of the authors [5] that the
plasticity may not be explained on a purely mechanical
basis, but should be considered as a part of the problems
of non-linear dynamic systems, operating far away from the
balance — synergetics.

In synergetics specially developed for explanation of
spontaneous origination of structures in such systems,
the serious issue is the mechanism of the spontaneous
occurrence of large-scale coherence in the media with
interactions of microscopic scale [5,6]. The above fully
refers to the plastic deformation, too. In the plasticity
physics developed on the basis of the dislocation the-
ory [7-9], the spatial scale of interactions are specified
by Burgers vector of dislocations b~ 10~1m. Dislo-
cation assemblies arising in process of plastic flow with
specific dimensions § ~ 10~%m [9] (Figure 1,a) and the
observed pattern of localized plasticity with macroscopic
scale (coherence length) 1~ 10~2m (Figure 1,b) [1-3]
find not explanations within the traditional approaches.
Clarification of the physical nature of the ratio 1 > § > b
could have become a key to using the ideas and concepts
of synergetics in the study of the plasticity phenomenon.
Such attempt is undertaken in this paper devoted to
the physical substantiation of the scale ratio problem
solution.
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2. Genesis of two component model
of plastic flow

Achievement of the stated goal is not possible without
development of an adequate plastic flow model. One of
the obvious requirements to be a priori applied to such
theory consists in the need to use dislocation views, since
most operable models of plasticity physics are based on the
theory of dislocations [7-9].

2.1. Indenbom-Orlov-Estrin thermally activated
flow model

For this reason a new plastic flow model was built
on the basis of a strictly justified physically and many
times tested experimentally theory of thermally activated
plastic yield by Indenbom-Orlov-Estrin [10], where the
main elements are stagnated dislocation shears (pileups)
distributed in the volume of the deformed medium [7,8].
The process of plastic flow in the model [10] is described
by the sequence of independent acts of thermally activated
relaxation (decay) and origination of concentrators, and it
describes the plastic flow as homogeneous, not explaining
the effects of localization and origination at macroscopic
scale.

The speed of deformation at thermally activated shear in
the relaxation act is defined by the Arrhenius ratio [10-12]

é:éoexp(—iuok;_lzjo-), (1)

where & = const, Uy — height of potential barrier blocking
the elemental shear, ¢ — existing voltage, kg — Boltzmann
constant, T — temperature. Activation volume of the
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Figure 1. Examples of large-scale heterogeneities of the structure
in plastic deformation. Dislocation structure of deformed Zr (a);
pattern of localized plasticity in deformation Al [3] (b). exx-limit
component of plastic distortion tensor.

process of overcoming the barrier » may be seen as a
quantitative measure of stress concentration [11].

2.2. Two-component model of localized plasticity.
Structure

Two-component model of localized plasticity [1-3] is
built to take into account the correlated development
of shears. To translate this possibility into action, the
thermoactivation model [10] is supplemented with the prin-
ciple [13], according to which the self-organizing systems
arbitrarily separate into interconnected dynamic (power)
and information (signal) subsystems. The first includes
elements that change the state of the system, and the second
one is formed by elements that control the first with low dis-
turbances. It is assumed that the functional interconnection
of two subsystems is the reason for occurrence of coherent
phenomena in the medium [13].

In the two-component model the deformed medium is
presented with the assembly of originating and relaxing
stress concentrators (dynamic subsystem), where emitted
and absorbed acoustic pulses wander (information sub-
system). The required connection mechanism of the
subsystems must allow for the quantitative inspection on
the basis of the experimentally measured parameters of the
material plastic flow. The name two-component model is
justified taking into account the role of two subsystems.

The dynamic and information subsystems of the de-
formed medium change in process of the relaxation act.
Besides, the dynamics of pairwise connected processes of
origination-relaxation of concentrators in the dynamic sub-
system and emission-absorption of acoustic pulses in the
information subsystem in accordance with the fluctuation-
dissipation theorem [13] is defined by the mechanisms
specific for this subsystem.

The functional connection of the subsystems is executed
through acoustoplastic effect [14,15], i.e., imposition of
acoustic pulse stresses on the stresses at the plasticity
front stagnated at the barrier. This initiates the relaxation
of waiting concentrators, reducing the time of waiting
for the thermally activated relaxation acts of plasticity.
Therefore, a specific trait of the two-component model of
autowave plasticity is the combination of acoustoemission
and acoustoplastic effects that are usually studied separately
in its information subsystem.

Thanks to such combination, in the two-component
model of autowave plasticity it becomes possible to explain
the coherent development of elemental acts of plasticity.
The latter occurs, when the impulse of acoustic emission
emitted by the relaxing concentrator is captured by the
waiting concentrator and causes its relaxation. The same
mechanism serves as the cause for generation of autowaves
of localized plastic flow observed as a pattern of localized
plasticity [1-3].

The two-component model does not include the account-
ing of the input of certain dislocations in the description of
plasticity, which, obviously, is not relevant at the dislocation
densities of pgs > 104—10"*m=2 [9]. It may be noted
that the model is characterized with coarseness [16] that is
common for synergetics, i.e. indifference to small variations
of the process course conditions. This makes it possible to
identify the most important factors of the model and avoid
its over-complication.

2.3. Two-component model: scenario
and quantitative estimates

The step-by-step scenario of concentrator relaxation act
development is explained by Figure 2. The system of
three elastic stress concentrators stagnated by barriers is
considered. The first step is that concentrator 1 relaxes,
generating new dislocations in its neighborhood and emit-
ting an acoustic pulse with the path length of the specimen
size order. The arisen dislocations activate concentrator 2,
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Figure 2. Scenario of development of coherent plastic shears in
two-component model of plasticity. 1,2,3 — locked concentrators
of elastic stresses.

contacting with it, causing continuous or intermittent motion
of the plasticity front.

The second step is made by concentrator 3, which,
having absorbed the energy of the acoustic pulse, relaxes
with origination of a new shear in the area remote from
concentrator 1 at the distance of the order of the pulse
path length. The third step consists in capturing new shears
with local barriers and reproduction of the conditions to
repeat the listed steps, which provides for the continuity of
the plastic flow. The inspection of the scenario correctness
reduces to estimation of deformation, time and space scales
of the model and comparison of these estimates with the
actually observed values.

The deformation scale may be found, having defined the
length of the dislocations that originated in the relaxation act
as ~W/Gb?, where W ~ nGb?(In4R/L + 1/2) — elastic
energy of the pileup [10], released during its relaxation,
Gb?> — energy of the unit of length of the produced
dislocation line [5], L~ 10~*m — length of the pileup,
n — number of dislocations of unit length in it, G — shear
modulus, R — crystal size. The estimate for n = 10 shows
that W ~ 5 - 10° eV, which is sufficient to form dislocations
in the area with the surface area of ~ L? that have length of
~ 10'%p, i.e., appearance of N ~ 10° Franck-Reed sources
with length of 10°b [8]. If every source emits ¢ ~ 20
loops prior to locking [7], the entire assembly of the formed
loops provides for the summary shear § ~ bgN =~ 2 - 107b
in the area with size of ~ L. The growth of deformation
~ 8/L~ 1073 arising under such conditions turns out to
be close to the one observed experimentally in intermittent
plastic deformation [17].

For timé evaluation of two-component model parameters
let us consider the waiting time of the thermally activated
overcoming of the local barrier with height of Uy under
action of stress only

_ Uy —yo
Vab ~ 2710 " exp(%) (2)
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to the time at the joint action of the stress and the acoustic
pulse

g oo ),
3

In equations (2) and (3) Uy — yo — enthalpy of the relax-
ation act, wp — Debye frequency, y ~ bly/2 — activation
volume, y ~ b — width of potential barrier, | — distance
between barriers. The acoustic pulse with the amplitude
of elastic deformation ¢,. reduces enthalpy of activation by
~ yeG = po, accordingly reducing the waiting time of the
relaxation act. For quantitative evaluation let us accept that
in formulas (2) and (3) Uy — yo = 0.5¢eV, kgT ~ 1/40¢V,
y ~ 10*p%, and peG ~ 0.1eV. Then ¥y ~ 5-1073s and
Vap ~9-1077s, i€, Uap/Vsp ~50. Even with evident
coarseness this estimate confirms the efficiency of acoustic
pulses in acceleration of deformation processes.

Let us evaluate the macroscopic spatial scale of the model
by formulating a condition of the start of the acoustically
initiated act of concentrator 3 relaxation in the form of an
evident equation

~ —1
Uap = 270, €Xp

Uo — (0 + 0ue) :uo_lb%‘ (0 +e:G)~0, (4)

where value ~ (bly/2)e,G is elastic energy of the acoustic
pulse transferred to concentrator 3. Condition (4) provides
for the break of the plasticity front off the local barrier
with the joint action of the growing external stress and
stress of the acoustic pulse. Upon the break, the thermally
activated motion of dislocations in the fields of local barriers
is substituted with a quasi-viscous one, depending on the
properties of phononic and electronic gases [17,18].

Let us rewrite condition (4) in the form of
Uo — (blx/2)Geqe = (blx/2)c 0, adding the time of au-
towave front displacement along the slope of the local bar-
rier by half of its width ¥y ~ x/2V,w at continuous growth
of deforming stress (¢ — loading speed). Condition (4) is
met, if this time coincides with time 9J,. ~ 1/V;, for which
the acoustic pulse emitted in relaxation of concentrator 1,
reaches concentrator 3 and is absorbed by it. The resulting
equation of times ¥, = ;¢ = ¥ or

Ao X

v U ®)
indicates the causal relationship of relaxation acts in concen-
trators 3 and 1 at the distance 1 > x from each other. In ra-
tio (5) the autowave speed Vay ~ (27) " 'Aw =~ 10~* m/s is
specified by spatial scale 4 and frequency of oscillations
in the autowave wgyw ~ 1072 Hz, and speed of elastic wave
Vi =~ (27) " 'ywp ~ 10° m/s, accordingly, with barrier width
~ x and Debye frequency wp ~ 10'* Hz.

Therefore, the completed quantitative estimates of the
deformation, timé and space characteristics of the two-
component model of plasticity confirm its adequacy. Orig-
ination of phenomena of macroscopic scale ~ A in the
deformed medium may be considered as the reason for the
generation of the localized plasticity autowave.
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3. Two-component model and invariants
of plastic flow

Development of the two-component model of autowave
plastic deformation makes it possible to obtain the important
general ratios for this process — invariants of deformation,
making it possible to achieve deeper understanding of the
nature of plastic flow in solid bodies.

3.1. Invariants of autowave physics of plasticity
It is clear that equation (5) leads to ratio

Naw 5 1
=Z= -, 6

known as elastoplastic invariant of deformation. Its exis-
tence has been established and tested experimentally [1-3].
Within the framework of the specified representations it is
clear that invariant (6) may be seen as the consequence of
the time equation (5). The invariant relates elastic (y and
Vi) and plastic (A and V,y) characteristics of the deformed
medium and serves as the main equation of the autowave
theory of plasticity. The consequences from it explain the
important patterns of plastic flow, including establish the
relationship between the autowave theory of plasticity and
theory of dislocations [1-3].

There are at least three variants of interpretation of the
physical meaning of invariant [1-3], justified by its impor-
tance for the autowave plasticity model. In the entropic
explanation the ratios 1/ = ws > 1 and V;/Voy = wg > 1
are deemed to be scale and kinetic thermodynamic prob-
abilities, accordingly. The entropy change in generation
of autowaves of localized plasticity calculated using the
Boltzmann’s formula

AS=S; — S =kg(lnws —lnwy) =kglnl/2 (7)

turns out to be negative (AS < 0), which indicates the self-
organization of the structure in generation of autowaves of
localized plastic deformation [5].

The field version of explanation uses the analysis of vector
fields of reversible and irreversible displacements in the
autowave of localized plasticity. In this case the products
MWV, and xVi, the ratio of which forms invariant (6), are
non-diagonal components of 2 x 2-matrix of coefficients
of equations relating the speeds of shears with gradients
of deformations and stresses [2,3]. Equating them in
accordance with Onsager’s principle of symmetry [19], we
immediately obtain invariant (6).

Finally, hydrodynamic interpretation of invariant (6)
follows from its formal likeness to Reynolds number
Re = us/v [19], which becomes evident, if in equation (6)
you accept that }Vy = vp, — viscosity of phononic gas
braking the motion of dislocations [18], 1 = s — geometric,
and V,y = U — speed parameters of deformation. In this
case you may write

AVaw

Z= = Re, (8)

and then at the
Z = Rewn = 1/2.

The specified variants of interpretation have not fully
clarified the nature of invariant (6). This became possible
within the specified two-component model of localized
plasticity, making it possible to consistently explain the
causes and the mechanism of origination of macroscopic
scale of plastic flow. The developed point of view confirms
that the autowave mechanism of plasticity is controlled
by the relation of the processes of elastic and plastic
deformation implemented with substantially different speeds
and scales.

This thought allows for an interesting development. By
adding to equation (6) the de Brogliec mass of phonon
h/xVi = my, and autolocalizon (quasi-particles compliant
with the autowave of localized plasticity [20]) h/xVaw = My
and using averaging (. ..) by all data, you can write

h/ (xVk)

- 1
2 Ve S 2 ®)

stage of linear strain hardening:

Calculations [3] have shown that (m,) ~ &, and (M) ~ &,
where £ = 1.66 - 1072” kg — atomic unit of mass. In other
words, (My1) ~ 2(Myy), or

(ﬁ_ﬁ) — & (10)

Equation (10) leads to invariant (6) and ratio

e ALES n

for de Broglie mass of autolocalizon, which was called
a mass invariant. The effects from it (11) [3] enable,
having changed from the autowave of localized plasticity
to autolocalizon, to describe the plastic deformation as its
Brownian motion in phononic gas, to interpret deformation
and damage as condensation of autolocalizons and even
justify the introduction of quantum representations into the
physics of plasticity [3,20].
The product of elastoplastic Z and mass M invariants

_h
v

also turns out to be an invariant value. Data given in
paper [3], confirm the validity of ratio (12), which highlights
the decisive role of the crystalline lattice in the development
of plastic flow. The meaning of this conclusion consists
in the fact that even though the plasticity depends on
movement of dislocations, the latter are the mobile sources
of elastic field [7,8] and, running on the plane of perfect
crystal sliding, do not damage its perfection. The arisen
irreversible (plastic) deformations are related to spatial
redistribution of dislocations in the deformed medium and
to the change of their density.

Invariant (6) may be given a deeper physical meaning, if,
in accordance with the approach proposed in paper [21],

~ o~

M=¢"1 =0.84+0.11~1 (12)
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scale Hartree units are used to describe the autowave
plasticity, which are expressed with combinations of physical
constants. The length scale then is the Bohr’s radius of
hydrogen atom ag = h*/me?, and the speed scale in the
condensed medium — value Vs = (€2/h) - (m/2M)/2 [20].
Here h =h/2m is reduced Planck constant, € and m —
electron charge and mass, accordingly, and M — atom
mass. Having made the replacements y — ag and V; — Vs
in equation (6), we get

2Vaw = M &

vtk M~2, (13)

Root dependence (AVyy) ~ M™% is experimentally
confirmed in paper [22] with data for nineteen me-
tals. The calculated and experimentally found values
2WVyw =~ YVt = 10~7 m?/s are the minimum values of kine-
matic viscosity of elastic (xV;) and inelastic (1V,y) defor-
mation processes.

3.2. Intermittence of plastic flow

Both in the two-component model, and in the model [10],
plastic flow is seen as the sequence of relaxation jumps of
stress and deformation in thermally activated overcoming
of local barriers. One may think that intermittence is
the common mechanism for deformation processes [23],
and the curve of plastic flow consists of many subsequent
jumps. They may not be always recorded by the recording
equipment, but for some materials the main patterns of
macroscopic intermittent deformation have been studied in
detail [17,24,25).

The general principles of macroscopic intermittence de-
velopment within a two-component model are explained,
if you accept that specimen length L must accommodate
integer number of i = 1, 2, 3... autowaves with length 4,
i.e, L =2i. Let us now write equation (13) as

h

1 ¢
Z(mM)% Vaw M%Vaw’

(14)

and, accepting that 1 ~ §L/i, obtain the specimen elonga-
tion from it

h i i £
JE R ==, 15
2(mM)z Vaw . M2V, K (13)

oL ~

where coefficient k = VaWM% takes into account the individ-
ual nature of the deformed material via speed of distribution
of autowaves of localized plasticity V,y and atomic mass M.

Estimation of value §L for the case of extension of
a specimen from Al at i =1 and specific speed of the
autowave of localized plasticity Vi ~ 1.8 - 10~*m/s [1],
made using equation (15), results in L ~ 10~*m. This
corresponds to the growth of deformation in an indi-
vidual jump de = % ~ 1073, which is consistent with
the many times experimentally measured parameters of
individual deformation jumps, given in papers [17,24,25],
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and with the estimate made above in this article when
analyzing the deformation parameter of the two-component
model.

4. Conclusion

The absence of the adequate explanation of the macro-
scopic scale origination mechanisms (length of autowave
of localized plasticity) has for a long time prevented the
understanding of the physical fundamentals for the autowave
model of plasticity. The satisfactory understanding of this
problem was achieved in this paper due to development
of the two-component model of localized plasticity and
inclusion of the ideas on the medium separation of the
interacting dynamic and information subsystems. The
explanation of the reasons for origination of macroscopic
scale of localized plasticity obtained on this basis led to the
following conclusions.

1. When the nature of phenomena in the deformed
medium are analyzed, its spontaneous separation into
dynamic and information subsystems should be taken
into account. The first units the waiting and relaxing
concentrators of dislocation origin, and the second one
includes signals of acoustic emission, emitted or absorbed
in process of every relaxation act.

2. Plastic form change of the medium is carried out
by elements of the dynamic subsystem (relaxation acts),
controlled by elements of the information subsystem by
impact at their kinetics. Interaction of the named subsys-
tems has the acoustic nature and is responsible for the
formation of the pattern of localized plasticity with its
specific macroscopic scale.

3. Quantitative estimates of deformation timé and spatial
parameters of the two-component model of autowave
plasticity based on the mechanism of activation of the
relaxation shears by acoustic pulses emitted in disintegration
of other concentrators, provide the correct dimensions of
the areas of coherent deformation of macroscopic scale in
process of plastic flow of crystalline materials.

4. Within the autowave theory of plasticity the physical
meaning of elastoplastic invariant of deformation is de-
termined by the interrelated roles of elastic (wave) and
plastic (autowave) deformation processes in the deformed
condensed medium. The invariant indicates the quantitative
strong bond of these processes defining the kinetics of
plastic flow.
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