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The structure of a two-component model of localized plasticity and the scenario of the birth of macroscopic

scales of plastic flow within its framework are considered. The mechanism of the emergence of a macroscopic

autowave scale during the development of plastic deformation is proposed and quantitatively substantiated. The

conditions for the stratification of a deformable medium into dynamic and information subsystems are described

and their roles in the formation of macroscopic scales of the order of the length of the autowave of localized

plasticity are analyzed. The nature of the relationship between the emergence of a macroscopic scale during plastic

flow and the elastic-plastic invariant of deformation, previously established experimentally, is explained.
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1. Introduction

The autowave plasticity theory [1–3] that is currently

being developed is based on the assumptions that the

heterogeneity of deformation, which is an integral sign of

plastic flow, is the result of self-organization of the defective

assembly in the deformed environment. This idea proposed

for the first time by Seger and Franck in paper [4], was

proposed by the statement of the authors [5] that the

plasticity may not be explained on a purely mechanical

basis, but should be considered as a part of the problems

of non-linear dynamic systems, operating far away from the

balance — synergetics.

In synergetics specially developed for explanation of

spontaneous origination of structures in such systems,

the serious issue is the mechanism of the spontaneous

occurrence of large-scale coherence in the media with

interactions of microscopic scale [5,6]. The above fully

refers to the plastic deformation, too. In the plasticity

physics developed on the basis of the dislocation the-

ory [7–9], the spatial scale of interactions are specified

by Burgers vector of dislocations b ≈ 10−10 m. Dislo-

cation assemblies arising in process of plastic flow with

specific dimensions δ ≈ 10−6 m [9] (Figure 1, a) and the

observed pattern of localized plasticity with macroscopic

scale (coherence length) λ ≈ 10−2 m (Figure 1, b) [1–3]
find not explanations within the traditional approaches.

Clarification of the physical nature of the ratio λ ≫ δ ≫ b
could have become a key to using the ideas and concepts

of synergetics in the study of the plasticity phenomenon.

Such attempt is undertaken in this paper devoted to

the physical substantiation of the scale ratio problem

solution.

2. Genesis of two component model
of plastic flow

Achievement of the stated goal is not possible without

development of an adequate plastic flow model. One of

the obvious requirements to be a priori applied to such

theory consists in the need to use dislocation views, since

most operable models of plasticity physics are based on the

theory of dislocations [7–9].

2.1. Indenbom–Orlov–Estrin thermally activated
flow model

For this reason a new plastic flow model was built

on the basis of a strictly justified physically and many

times tested experimentally theory of thermally activated

plastic yield by Indenbom–Orlov–Estrin [10], where the

main elements are stagnated dislocation shears (pileups)
distributed in the volume of the deformed medium [7,8].
The process of plastic flow in the model [10] is described

by the sequence of independent acts of thermally activated

relaxation (decay) and origination of concentrators, and it

describes the plastic flow as homogeneous, not explaining

the effects of localization and origination at macroscopic

scale.

The speed of deformation at thermally activated shear in

the relaxation act is defined by the Arrhenius ratio [10–12]

ε̇ = ε̇0 exp
(
−

U0 − γσ

kBT

)
, (1)

where ε̇ = const, U0 — height of potential barrier blocking

the elemental shear, σ — existing voltage, kB — Boltzmann

constant, T — temperature. Activation volume of the
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Figure 1. Examples of large-scale heterogeneities of the structure

in plastic deformation. Dislocation structure of deformed Zr (a);
pattern of localized plasticity in deformation Al [3] (b). εxx -limit

component of plastic distortion tensor.

process of overcoming the barrier γ may be seen as a

quantitative measure of stress concentration [11].

2.2. Two-component model of localized plasticity.

Structure

Two-component model of localized plasticity [1–3] is

built to take into account the correlated development

of shears. To translate this possibility into action, the

thermoactivation model [10] is supplemented with the prin-

ciple [13], according to which the self-organizing systems

arbitrarily separate into interconnected dynamic (power)
and information (signal) subsystems. The first includes

elements that change the state of the system, and the second

one is formed by elements that control the first with low dis-

turbances. It is assumed that the functional interconnection

of two subsystems is the reason for occurrence of coherent

phenomena in the medium [13].

In the two-component model the deformed medium is

presented with the assembly of originating and relaxing

stress concentrators (dynamic subsystem), where emitted

and absorbed acoustic pulses wander (information sub-

system). The required connection mechanism of the

subsystems must allow for the quantitative inspection on

the basis of the experimentally measured parameters of the

material plastic flow. The name two-component model is

justified taking into account the role of two subsystems.

The dynamic and information subsystems of the de-

formed medium change in process of the relaxation act.

Besides, the dynamics of pairwise connected processes of

origination–relaxation of concentrators in the dynamic sub-

system and emission–absorption of acoustic pulses in the

information subsystem in accordance with the fluctuation-

dissipation theorem [13] is defined by the mechanisms

specific for this subsystem.

The functional connection of the subsystems is executed

through acoustoplastic effect [14,15], i. e., imposition of

acoustic pulse stresses on the stresses at the plasticity

front stagnated at the barrier. This initiates the relaxation

of waiting concentrators, reducing the time of waiting

for the thermally activated relaxation acts of plasticity.

Therefore, a specific trait of the two-component model of

autowave plasticity is the combination of acoustoemission

and acoustoplastic effects that are usually studied separately

in its information subsystem.

Thanks to such combination, in the two-component

model of autowave plasticity it becomes possible to explain

the coherent development of elemental acts of plasticity.

The latter occurs, when the impulse of acoustic emission

emitted by the relaxing concentrator is captured by the

waiting concentrator and causes its relaxation. The same

mechanism serves as the cause for generation of autowaves

of localized plastic flow observed as a pattern of localized

plasticity [1–3].

The two-component model does not include the account-

ing of the input of certain dislocations in the description of

plasticity, which, obviously, is not relevant at the dislocation

densities of ρdisl ≥ 1014−1016 m−2 [9]. It may be noted

that the model is characterized with coarseness [16] that is
common for synergetics, i. e. indifference to small variations

of the process course conditions. This makes it possible to

identify the most important factors of the model and avoid

its over-complication.

2.3. Two-component model: scenario

and quantitative estimates

The step-by-step scenario of concentrator relaxation act

development is explained by Figure 2. The system of

three elastic stress concentrators stagnated by barriers is

considered. The first step is that concentrator 1 relaxes,

generating new dislocations in its neighborhood and emit-

ting an acoustic pulse with the path length of the specimen

size order. The arisen dislocations activate concentrator 2,
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Figure 2. Scenario of development of coherent plastic shears in

two-component model of plasticity. 1, 2, 3 — locked concentrators

of elastic stresses.

contacting with it, causing continuous or intermittent motion

of the plasticity front.

The second step is made by concentrator 3, which,

having absorbed the energy of the acoustic pulse, relaxes

with origination of a new shear in the area remote from

concentrator 1 at the distance of the order of the pulse

path length. The third step consists in capturing new shears

with local barriers and reproduction of the conditions to

repeat the listed steps, which provides for the continuity of

the plastic flow. The inspection of the scenario correctness

reduces to estimation of deformation, time and space scales

of the model and comparison of these estimates with the

actually observed values.

The deformation scale may be found, having defined the

length of the dislocations that originated in the relaxation act

as ∼ W/Gb2, where W ≈ nGb2(ln 4R/L + 1/2) — elastic

energy of the pileup [10], released during its relaxation,

Gb2 — energy of the unit of length of the produced

dislocation line [5], L ≈ 10−4 m — length of the pileup,

n — number of dislocations of unit length in it, G — shear

modulus, R — crystal size. The estimate for n = 10 shows

that W ≈ 5 · 109 eV, which is sufficient to form dislocations

in the area with the surface area of ∼ L2 that have length of

∼ 1010b, i. e., appearance of N ≈ 106 Franck-Reed sources

with length of 103b [8]. If every source emits q ≈ 20

loops prior to locking [7], the entire assembly of the formed

loops provides for the summary shear δ ≈ bqN ≈ 2 · 107b
in the area with size of ∼ L. The growth of deformation

∼ δ/L ≈ 10−3 arising under such conditions turns out to

be close to the one observed experimentally in intermittent

plastic deformation [17].

For timé evaluation of two-component model parameters

let us consider the waiting time of the thermally activated

overcoming of the local barrier with height of U0 under

action of stress only

ϑab ≈ 2πω−1
D exp

(U0 − γσ

kBT

)
(2)

to the time at the joint action of the stress and the acoustic

pulse

ϑap ≈ 2πω−1
D exp

[U0 − γ(σ + εacG)

kBT

]
≈ ϑ exp

(
−
γεG
kBT

)

ab
.

(3)
In equations (2) and (3) U0 − γσ — enthalpy of the relax-

ation act, ωD — Debye frequency, γ ≈ blχ/2 — activation

volume, χ ≈ b — width of potential barrier, l — distance

between barriers. The acoustic pulse with the amplitude

of elastic deformation εac reduces enthalpy of activation by

∼ γεG = γσ , accordingly reducing the waiting time of the

relaxation act. For quantitative evaluation let us accept that

in formulas (2) and (3) U0 − γσ ≈ 0.5 eV, kBT ≈ 1/40 eV,

γ ≈ 104b3, and γεG ≈ 0.1 eV. Then ϑab ≈ 5 · 10−5 s and

ϑap ≈ 9 · 10−7 s, i. e., ϑab/ϑap ≈ 50. Even with evident

coarseness this estimate confirms the efficiency of acoustic

pulses in acceleration of deformation processes.

Let us evaluate the macroscopic spatial scale of the model

by formulating a condition of the start of the acoustically

initiated act of concentrator 3 relaxation in the form of an

evident equation

U0 − γ(σ + σac) = U0 − lb
χ

2
(σ + εacG) ≈ 0, (4)

where value ∼ (blχ/2)εacG is elastic energy of the acoustic

pulse transferred to concentrator 3. Condition (4) provides

for the break of the plasticity front off the local barrier

with the joint action of the growing external stress and

stress of the acoustic pulse. Upon the break, the thermally

activated motion of dislocations in the fields of local barriers

is substituted with a quasi-viscous one, depending on the

properties of phononic and electronic gases [17,18].
Let us rewrite condition (4) in the form of

U0 − (blχ/2)Gεac ≈ (blχ/2)σ̇ ϑpl, adding the time of au-

towave front displacement along the slope of the local bar-

rier by half of its width ϑpl ≈ χ/2Vaw at continuous growth

of deforming stress (σ̇ — loading speed). Condition (4) is

met, if this time coincides with time ϑac ≈ λ/Vt, for which

the acoustic pulse emitted in relaxation of concentrator 1,

reaches concentrator 3 and is absorbed by it. The resulting

equation of times ϑpl = ϑac = ϑ or

λ

Vt
≈ ϑ ≈

χ

2Vaw

(5)

indicates the causal relationship of relaxation acts in concen-

trators 3 and 1 at the distance λ ≫ χ from each other. In ra-

tio (5) the autowave speed Vaw ≈ (2π)−1λω ≈ 10−4 m/s is

specified by spatial scale λ and frequency of oscillations

in the autowave ωaw ≈ 10−2 Hz, and speed of elastic wave

Vt ≈ (2π)−1χωD ≈ 103 m/s, accordingly, with barrier width

∼ χ and Debye frequency ωD ≈ 1013 Hz.

Therefore, the completed quantitative estimates of the

deformation, timé and space characteristics of the two-

component model of plasticity confirm its adequacy. Orig-

ination of phenomena of macroscopic scale ∼ λ in the

deformed medium may be considered as the reason for the

generation of the localized plasticity autowave.
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3. Two-component model and invariants
of plastic flow

Development of the two-component model of autowave

plastic deformation makes it possible to obtain the important

general ratios for this process — invariants of deformation,

making it possible to achieve deeper understanding of the

nature of plastic flow in solid bodies.

3.1. Invariants of autowave physics of plasticity

It is clear that equation (5) leads to ratio

λVaw

χVt
= Ẑ ≈

1

2
, (6)

known as elastoplastic invariant of deformation. Its exis-

tence has been established and tested experimentally [1–3].
Within the framework of the specified representations it is

clear that invariant (6) may be seen as the consequence of

the time equation (5). The invariant relates elastic (χ and

Vt) and plastic (λ and Vaw) characteristics of the deformed

medium and serves as the main equation of the autowave

theory of plasticity. The consequences from it explain the

important patterns of plastic flow, including establish the

relationship between the autowave theory of plasticity and

theory of dislocations [1–3].
There are at least three variants of interpretation of the

physical meaning of invariant [1–3], justified by its impor-

tance for the autowave plasticity model. In the entropic

explanation the ratios λ/χ = ws ≫ 1 and Vt/Vaw = wk ≫ 1

are deemed to be scale and kinetic thermodynamic prob-

abilities, accordingly. The entropy change in generation

of autowaves of localized plasticity calculated using the

Boltzmann’s formula

1S = Ss − Sk = kB(lnws − lnwk) = kB ln 1/2 (7)

turns out to be negative (1S < 0), which indicates the self-

organization of the structure in generation of autowaves of

localized plastic deformation [5].
The field version of explanation uses the analysis of vector

fields of reversible and irreversible displacements in the

autowave of localized plasticity. In this case the products

λVaw and χVt , the ratio of which forms invariant (6), are
non-diagonal components of 2× 2-matrix of coefficients

of equations relating the speeds of shears with gradients

of deformations and stresses [2,3]. Equating them in

accordance with Onsager’s principle of symmetry [19], we
immediately obtain invariant (6).
Finally, hydrodynamic interpretation of invariant (6)

follows from its formal likeness to Reynolds number

Re= us/ν [19], which becomes evident, if in equation (6)
you accept that χVt = νph — viscosity of phononic gas

braking the motion of dislocations [18], λ ≡ s — geometric,

and Vaw ≡ u — speed parameters of deformation. In this

case you may write

Ẑ =
λVaw

νph
≡ Re, (8)

and then at the stage of linear strain hardening:

Ẑ = Relwh = 1/2.

The specified variants of interpretation have not fully

clarified the nature of invariant (6). This became possible

within the specified two-component model of localized

plasticity, making it possible to consistently explain the

causes and the mechanism of origination of macroscopic

scale of plastic flow. The developed point of view confirms

that the autowave mechanism of plasticity is controlled

by the relation of the processes of elastic and plastic

deformation implemented with substantially different speeds

and scales.

This thought allows for an interesting development. By

adding to equation (6) the de Broglie mass of phonon

h/χVt = mph and autolocalizon (quasi-particles compliant

with the autowave of localized plasticity [20]) h/χVaw = ma-l

and using averaging 〈. . .〉 by all data, you can write

Ẑ =
h/〈χVt〉

h/〈λVaw〉
≈

1

2
. (9)

Calculations [3] have shown that 〈ma-l〉 ≈ ξ , and 〈mph〉 ≈ ξ ,

where ξ = 1.66 · 10−27 kg — atomic unit of mass. In other

words, 〈ma-l〉 ≈ 2〈mph〉, or

( h
〈Vaw〉

−
h

〈χVt〉

)
= ξ. (10)

Equation (10) leads to invariant (6) and ratio

ξ−1
〈 h
λVaw

〉
= M̂ ≈ 2, (11)

for de Broglie mass of autolocalizon, which was called

a mass invariant. The effects from it (11) [3] enable,

having changed from the autowave of localized plasticity

to autolocalizon, to describe the plastic deformation as its

Brownian motion in phononic gas, to interpret deformation

and damage as condensation of autolocalizons and even

justify the introduction of quantum representations into the

physics of plasticity [3,20].
The product of elastoplastic Ẑ and mass M̂ invariants

ẐM̂ = ξ−1 h
〈χVt〉

= 0.84 ± 0.11 ≈ 1 (12)

also turns out to be an invariant value. Data given in

paper [3], confirm the validity of ratio (12), which highlights

the decisive role of the crystalline lattice in the development

of plastic flow. The meaning of this conclusion consists

in the fact that even though the plasticity depends on

movement of dislocations, the latter are the mobile sources

of elastic field [7,8] and, running on the plane of perfect

crystal sliding, do not damage its perfection. The arisen

irreversible (plastic) deformations are related to spatial

redistribution of dislocations in the deformed medium and

to the change of their density.

Invariant (6) may be given a deeper physical meaning, if,

in accordance with the approach proposed in paper [21],
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scale Hartree units are used to describe the autowave

plasticity, which are expressed with combinations of physical

constants. The length scale then is the Bohr’s radius of

hydrogen atom a0 = ~
2/me2, and the speed scale in the

condensed medium — value Vs = (e2/~) · (m/2M)1/2 [20].
Here ~ = h/2π is reduced Planck constant, e and m —
electron charge and mass, accordingly, and M — atom

mass. Having made the replacements χ → a0 and Vt → Vs

in equation (6), we get

2λVaw ≈ χVt ≈
~

(mM)
1
2

∼ M−

1
2 . (13)

Root dependence (λVaw) ∼ M−1/2 is experimentally

confirmed in paper [22] with data for nineteen me-

tals. The calculated and experimentally found values

2λVaw ≈ χVt ≈ 10−7 m2/s are the minimum values of kine-

matic viscosity of elastic (χVt) and inelastic (λVaw) defor-

mation processes.

3.2. Intermittence of plastic flow

Both in the two-component model, and in the model [10],
plastic flow is seen as the sequence of relaxation jumps of

stress and deformation in thermally activated overcoming

of local barriers. One may think that intermittence is

the common mechanism for deformation processes [23],
and the curve of plastic flow consists of many subsequent

jumps. They may not be always recorded by the recording

equipment, but for some materials the main patterns of

macroscopic intermittent deformation have been studied in

detail [17,24,25].
The general principles of macroscopic intermittence de-

velopment within a two-component model are explained,

if you accept that specimen length L must accommodate

integer number of i = 1, 2, 3 . . . autowaves with length λ,

i. e., L = λi . Let us now write equation (13) as

λ =
~

2(mM)
1
2

·
1

Vaw

=
ξ

M
1
2Vaw

, (14)

and, accepting that λ ≈ δL/i , obtain the specimen elonga-

tion from it

δL ≈
~

2(mM)
1
2

·
i

Vaw

= ξ ·
i

M
1
2Vaw

=
ξ

κ
· i, (15)

where coefficient κ = VawM
1
2 takes into account the individ-

ual nature of the deformed material via speed of distribution

of autowaves of localized plasticity Vaw and atomic mass M .

Estimation of value δL for the case of extension of

a specimen from Al at i = 1 and specific speed of the

autowave of localized plasticity Vaw ≈ 1.8 · 10−4 m/s [1],
made using equation (15), results in δL ≈ 10−4 m. This

corresponds to the growth of deformation in an indi-

vidual jump δε = δL
L ≈ 10−3, which is consistent with

the many times experimentally measured parameters of

individual deformation jumps, given in papers [17,24,25],

and with the estimate made above in this article when

analyzing the deformation parameter of the two-component

model.

4. Conclusion

The absence of the adequate explanation of the macro-

scopic scale origination mechanisms (length of autowave

of localized plasticity) has for a long time prevented the

understanding of the physical fundamentals for the autowave

model of plasticity. The satisfactory understanding of this

problem was achieved in this paper due to development

of the two-component model of localized plasticity and

inclusion of the ideas on the medium separation of the

interacting dynamic and information subsystems. The

explanation of the reasons for origination of macroscopic

scale of localized plasticity obtained on this basis led to the

following conclusions.

1. When the nature of phenomena in the deformed

medium are analyzed, its spontaneous separation into

dynamic and information subsystems should be taken

into account. The first units the waiting and relaxing

concentrators of dislocation origin, and the second one

includes signals of acoustic emission, emitted or absorbed

in process of every relaxation act.

2. Plastic form change of the medium is carried out

by elements of the dynamic subsystem (relaxation acts),
controlled by elements of the information subsystem by

impact at their kinetics. Interaction of the named subsys-

tems has the acoustic nature and is responsible for the

formation of the pattern of localized plasticity with its

specific macroscopic scale.

3. Quantitative estimates of deformation timé and spatial

parameters of the two-component model of autowave

plasticity based on the mechanism of activation of the

relaxation shears by acoustic pulses emitted in disintegration

of other concentrators, provide the correct dimensions of

the areas of coherent deformation of macroscopic scale in

process of plastic flow of crystalline materials.

4. Within the autowave theory of plasticity the physical

meaning of elastoplastic invariant of deformation is de-

termined by the interrelated roles of elastic (wave) and

plastic (autowave) deformation processes in the deformed

condensed medium. The invariant indicates the quantitative

strong bond of these processes defining the kinetics of

plastic flow.
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