Physics of the Solid State
Volumes and Issues
Crystal growth and anisotropy of ionic conductivity of trifluoride DyF3
Karimov D. N. 1, Sorokin N. I. 1
1Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
Email: dnkarimov@gmail.com, nsorokin1@yandex.ru

PDF
Crystallographically oriented single crystals of DyF3, a representative of the third structural group of rare-earth trifluorides (structure β-YF3, sp. gr. Pnma, unit cell parameters a=6.4603(2), b=6.9104(1), c=4.3808(2) Angstrem), were grown for the first time by the directional crystallization technique. Temperature (386-783 K) measurements of the ionic conductivity of this crystal were carried out along and perpendicular to the crystallographic b axis. It was found that DyF3 crystals have weak anisotropy of electrical conductivity, the coefficient σ|| b normal b=2.2± 0.1 and σ|| b=2.5· 10-6 S/cm (at 500 K). The relationship between the characteristics of ion transport and the crystal structure is discussed for the general family of rare earth trifluorides with the β-YF3 structure, including RF3 compounds (R=Dy, Tb, Ho), low-temperature modifications of β-RF3 (R=Er, Y) and solid solutions Gd0.3Er0.7F3, Gd0.5Y0.5F3. It is shown that for this family of orthorhombic trifluorides, with an increase in the radius of rare earth cations, the activation enthalpy of ion transfer (vacancy mechanism) decreases, which leads to an increase in ionic conductivity. Keywords: electrical conductivity, ion transport, point defects, dysprosium trifluoride, crystal growth.
  1. A.K. Ivanov-Shits, I.V. Murin. Ionika tverdogo tela. Tom 2. Izd-vo SPbU, SPb (2010). 1000 s. (in Russian)
  2. B.P. Sobolev. The Rare Earth Thrifluorides. Part II. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals. Institute of Crystallography, Moscow, and Institut d'Estudis Catalans. Barcelona. Spain. 2001. 460 p
  3. A. Duvel, J. Bednarcik, V. Sepelak, P. Heitjans. J. Phys. Chem. C. 118, 13, 7117 (2014). https://doi.org/10.1021/jp410018t
  4. C. Rongeat, M. Anji Reddy, R. Witter, M. Fichtner. ACS Appl. Mater. Interfaces 6, 2103 (2014). https://doi.org/10.1021/am4052188
  5. O. Greis, J.M. Haschke. Rare Earth Fluorides. In: Handbook on the Physics and Chemistry of Rare Earths (chapter 45), K.A. Gschneidner, L. Eyring (Eds.). Elsevier North-Holland, Amsterdam. 5, 387 (1982). https://doi.org/10.1016/S0168-1273(82)05008-9
  6. B.P. Sobolev. Crystallogr. Rep. 64, 5, 713 (2019). https://doi.org/10.1134/S1063774519050183
  7. S.S. Batsanov, E.V. Dulepov, L.I. Kozhevina. Zhurn. strukt. khimii 8, 4, 714 (1967). (in Russian)
  8. A.V. Chadwick, D.S. Hope, G. Jaroszkiewicz, J.H. Strange. In: Fast Ion Transport in Solids, P. Vashishta, N. Mundy, G.K. Shenoy (Eds.). Elsevier North-Holland, Amsterdam. (1979). P. 683
  9. A. Roos, F.C.M. van de Pol, J. Schoonman. Solid State Ionics. 13, 1913 (1984)
  10. C. Hoff, H.D. Wiemhofer, O. Glumov, I.V. Murin. Solid State Ionics 101-103, 445 (1997)
  11. V.V. Sinitsyn, O. Lips, A.F. Privalov, F. Fijara, I.V. Murin. J. Phys. Chem. Solids 64, 1201 (2003). https://doi.org/10.1016/S0022-3697(03)00050-7
  12. N.I. Sorokin, V.V. Grebenev, D.N. Karimov. FTT 63, 9, 1376 (2021). (in Russian). https://doi.org/10.21883/FTT.2021.09.51313.054
  13. N.I. Sorokin, D.N. Karimov, B.P. Sobolev. Kristallografiya 64, 4, 596 (2019). (in Russian). https://doi.org/10.1134/S0023476119040222
  14. V. Trnovcova, P.P. Fedorov, M.D. Valkovskii, T. Sramkova, A.A. Bystrova, B.P. Sobolev. Ionics 3, 313 (1997)
  15. N.I. Sorokin, B.P. Sobolev, M. Breiter. FTT 44, 2, 272 (2002). (in Russian)
  16. V. Trnovcova, P.P. Fedorov, B.P. Sobolev, K.B. Seyranyan, S.A. Oganesyan, M.D. Valkovsky. Kristallografiya 41, 4, 731 (1996). (in Russian)
  17. V. Trnovcova L. Mitas, C. Jeskova, P.P. Fedorov, B.P. Sobolev. Extended Abstracts. 6th Inter. Conf. on Solid State Ionics. Garmisch-Partenkirchen, Germany (1987). P. 236
  18. F.H. Spedding, B.J. Beaudry, D.C. Henderson, J. Moorman. J. Chem. Phys. 60, 4, 1578 (1974). https://doi.org/10.1063/1.1681233
  19. G. Garton, P.J. Walker. Mater. Res. Bull. 13, 2, 129 (1978). https://doi.org/10.1016/0025-5408(78)90077-6
  20. J. Anders., N. Limberg, B. Paulus. Materials 15, 17, 6048 (2022). https://doi.org/10.3390/ma15176048
  21. O. Greis, M.S.R. Cader. Thermochim. Acta 87, 145 (1985). https://doi.org/10.1016/0040-6031(85)85329-6
  22. A.V. Savinkov, S.L. Korableva, A.A. Rodionov, I.N. Kurkin, B.Z. Malkin, M.S. Tagirov, H. Suzuki, K. Matsumoto, S. Abe. J. Phys. Condens. Matter. 20, 48, 485220 (2008). https://doi.org/10.1088/0953-8984/20/48/485220
  23. A. Kawashima, T. Nakanishi, Y. Kitagawa, K. Fujita, K. Tanaka, K. Fushimi, M.A. Malik, P. O'Brien, Y. Hasegawa. Bull. Chem. Soc. Jpn. 88, 10, 1453 (2015). https://doi.org/10.1246/bcsj.20150198
  24. D. Vojna, D.N. Karimov, A.G. Ivanova, P.A. Popov, H. Kumai, R. Yasuhara, O. Slezak, M. Smrvz, T. Mocek. Opt. Mater. 142, 114016 (2023). https://doi.org/10.1016/j.optmat.2023.114016
  25. U.V. Valiev, D.N. Karimov, G.W. Burdick, R. Rakhimov, V.O. Pelenovich, D. Fu. J. Appl. Phys. 121, 24, 243105 (2017). https://doi.org/10.1063/1.4989839
  26. C. Saliman. Nucl. Instr. Meth. B. 267, 14, 2423 (2009). https://doi.org/10.1016/j.nimb.2009.05.001
  27. D.N. Karimov, I.I. Buchinskaya, A.V. Koshelev, N.V. Samsonova, P.A. Popov. Crystallogr. Rep. 66, 6, 1113 (2021). https://doi.org/10.1134/S1063774521060171
  28. D.N. Karimov, N.L. Sizova, B.P. Sobolev, D.S. Lisovenko. Crystallogr. Rep. 63, 6, 96 (2018). https://doi.org/10.1134/S1063774518010108
  29. B.P. Sobolev; E.A. Sulyanova. Int. J. Mol. Sci. 24, 17080 (2023). https://doi.org/10.3390/ijms242317080
  30. O. Greis, T. Petzel. Z. anorgan. und allgem. Chem. 403, 1, 1 (1974)
  31. D.N. Karimov, N.I. Sorokin. Solid State Ionics 417, 116710 (2024). https://doi.org/10.1016/j.ssi.2024.116710
  32. A.K. Ivanov-Shits, N.I. Sorokin, P.P. Fedorov, B.P. Sobolev. FTT 25, 6, 1748 (1983). (in Russian)
  33. A. Roos, J. Schoonman. Solid State Ionics 1984. 13, 205 (1984)
  34. N.I. Sorokin, B.P. Sobolev. FTT 61, 1, 53 (2019). (in Russian). https://doi.org/10.21883/FTT.2019.01.46893.181
  35. A.I. Livshits, V.M. Buznik, P.P. Fedorov, B.P. Sobolev. Yaderniy magnitniy rezonans v kristallakh. Krasnoyarsk. (1978). S. 90. (in Russian)
  36. F. Wang, C. Grey. Chem. Mater. 9, 1068 (1997)
  37. N.I. Sorokin. Kristallografiya, 68, 1, 58 (2023). (in Russian). https://doi.org/10.31857/S0023476123010253
  38. R.D. Shannon. Acta Crystallogr. A. 32, 5, 751 (1976). https://doi.org/10.1107/S0567739476001551
  39. D.N. Karimov, I.I. Buchinskaya, N.I. Sorokin. Zeitschrift fur Kristallographie 237, 10-12, 429 (2022). https://doi.org/10.1515/zkri-2022-0032
  40. V. Trnovcova, L.S. Garashina, A. Skubla, P.P. Fedorov, R. Cicka, E.A. Krivandina, B.P. Sobolev. Solid State Ionics 2003. 57, 195 (2003). https://doi.org/10.1016/S0167-2738(02)00209-6
  41. N.I. Sorokin, B.P. Sobolev. FTT 50, 3, 402 (2008). (in Russian)
  42. N.I. Sorokin, B.P. Sobolev. Elektrokhimiya 43, 4, 420 (2007).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru