04

Crystal growth and anisotropy of ionic conductivity of trifluoride DyF₃

© D.N. Karimov, N.I. Sorokin

Shubnikov Crystallography Institute of Kurchatov Complex of Crystallography and Photonics, National Research Center "Kurchatov Institute",

Moscow, Russia

E-mail: dnkarimov@gmail.com, nsorokin1@yandex.ru

Received May 24, 2025 Revised May 24, 2025 Accepted May 26, 2025

Crystallographically oriented single crystals of DyF₃, a representative of the third structural group of rare-earth trifluorides (structure β -YF₃, sp. gr. Pnma, unit cell parameters a=6.4603(2), b=6.9104(1), c=4.3808(2) Å), were grown for the first time by the directional crystallization technique. Temperature (386–783 K) measurements of the ionic conductivity of this crystal were carried out along and perpendicular to the crystallographic b axis. It was found that DyF₃ crystals have weak anisotropy of electrical conductivity, the coefficient $\sigma_{\parallel b}/\sigma_{\perp b}=2.2\pm0.1$ and $\sigma_{\parallel b}=2.5\cdot10^{-6}$ S/cm (at 500 K). The relationship between the characteristics of ion transport and the crystal structure is discussed for the general family of rare earth trifluorides with the β -YF₃ structure, including RF₃ compounds (R=Dy, Tb, Ho), low-temperature modifications of β -RF₃ (R=Er, Y) and solid solutions Gd_{0.3}Er_{0.7}F₃, Gd_{0.5}Y_{0.5}F₃. It is shown that for this family of orthorhombic trifluorides, with an increase in the radius of rare earth cations, the activation enthalpy of ion transfer (vacancy mechanism) decreases, which leads to an increase in ionic conductivity.

Keywords: electrical conductivity, ion transport, point defects, dysprosium trifluoride, crystal growth.

DOI: 10.61011/PSS.2025.06.61687.138-25

1. Introduction

The phenomenon of anisotropy in ionic conductivity in fluoride crystals is of great interest from the fundamental point of view for understanding the mechanisms of ion transfer in fluorine-conducting solid electrolytes. Experimental data for study of anisotropy of fluoride electroconductivity makes it possible to identify structural paths of ion transport and to study the relation of ion transport to the features of crystal structure [1]. However, such studies of fluorides are rare and complicated with certain circumstances. Orientation-dependent experiments require usage of large single crystals of the needed quality, and the growth of fluoride crystals from the melt is complicated by pyrohydrolysis [2]. Electrophysical measurements of fluorides should be carried out using impedance spectroscopy in a wide frequency range to determine the ionic conductivity at direct current (DC) (σ_{dc}) [3,4], with special attention paid to separating the bulk impedance of the crystal and the impedance of the crystal/electrode interface

The large homologous series of trifluorides of rare earth elements (REE) RF_3 , comprising 17 compounds (R = Sc, Y, La and lanthanides Ce-Lu), is divided into five structural groups [5,6]. Group I includes compounds LaF_3 , CeF_3 , PrF_3 and NdF_3 with the tysonite-type structure (LaF_3), group II includes dimorphic compounds PmF_3 , SmF_3 , EuF_3 and GdF_3 with the structures LaF_3 (at high temperatures) and β -YF $_3$ (at low temperatures), group III includes compounds TbF_3 , DyF_3 and HoF_3 with the structure β -YF $_3$, to group IV — dimorphic compounds ErF_3 , TmF_3 , YbF $_3$,

LuF₃ and YF₃ with the structures α -YF₃ and β -YF₃ (at high and low temperatures respectivly) and group V — compound ScF₃ with the ReO₃-type structure. Crystals 16 of REE trifluorides (except for ScF₃ with cubic symmetry) must have anisotropic behavior of physical properties.

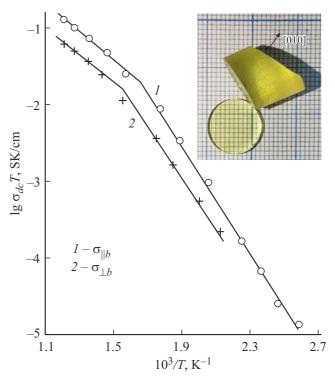
Chemical bonds in trifluorides RF_3 have practically the ion nature [7]. To date, studies of the anisotropy of ionic conductivity (by anions F^-) have been carried out only for a small number of REE trifluorides: LaF₃ [8–11], CeF₃ [12] (for two out of four compounds of group I), TbF₃ [13,14], HoF₃ [15] (for two out of three compounds of group III), ErF₃ [14], YF₃ [16,17] (for two out of five compounds of group IV), and also isovalent solid solution Gd_{0.5}Y_{0.5}F₃ [14,17].

Dysprosium trifluoride belongs to structural group III RF_3 (R=Tb, Dy and Ho), showing identical geochemical behavior, not undergoing polymorphous transformations up to melting and directly crystallized from the melt in structural type β -YF₃ [18–20]. The same type of structure has low-temperature modifications β -RF₃ for R=Er, Tm, Yb, Lu, Y [21]. Small single crystals DyF₃ (several millimeters) were obtained from the melt using Bridgman-Stockbarger method in [22]. Crystals based on DyF₃ and TbF₃ are seen as promising materials for magnetooptical applications [22–25] and dosimetry of γ -radiation [26].

The objective of the study is to grow oriented single crystals DyF₃, to analyze their temperature dependences of ionic conductivity in different crystallographic directions and discussion of the interrelation between characteristics of ion transport and crystallochemical structure for the

Direction	Low-temperature area	High-temperature area
b [010]	$A_1 = 7.8 \cdot 10^3 \text{SK/cm}$ $\Delta H_{\sigma,1} = 0.674 \pm 0.005 \text{eV}$ $\sigma_{\parallel b} = 9.9 \cdot 10^{-7} \text{S/cm} (470 \text{K})$	$A_2 = 29.7 \mathrm{SK/cm}$ $\Delta H_{\sigma,2} = 0.38 \pm 0.02 \mathrm{eV}$ $\sigma_{\parallel b} = 1.8 \cdot 10^{-4} \mathrm{S/cm} (829 \mathrm{K})$
⊥ <i>b</i> [010]	$A_1 = 1.6 \cdot 10^3 \text{ SK/cm}$ $\Delta H_{\sigma,1} = 0.64 \pm 0.01 \text{ eV}$ $\sigma_{\perp b} = 4.8 \cdot 10^{-7} \text{ S/cm (471 K)}$	$A_2 = 9 \text{ SK/cm}$ $\Delta H_{\sigma,2} = 0.35 \pm 0.03 \text{ eV}$ $\sigma_{\perp b} = 8.0 \cdot 10^{-5} \text{ S/cm } (826 \text{ K})$

Table 1. Parameters of ion transfer in crystals DyF₃ in different crystallographic directions in accordance with equation (2)


family of crystals RF_3 with structure β -YF₃, which belong to groups III and IV of homologous series of REE trifluorides

2. Experiment

Crystals of dysprosium trifluoride were grown from melt $(T_{fus} = 1439 \pm 10 \,\mathrm{K} \,\,[18])$ in a two-zone setup of resistive type in a graphite crucible by technique of vertical directional solidification (Bridgman method) [27]. suppress the reaction of pyrohydrolysis, the experiments to grow crystals DyF₃ were conducted in the fluorinating atmosphere He+CF₄. The initial reagent was dysprosium trifluoride synthesized from Dy₂O₃ (purity 99.998%) by hydrofluoride method. The melt was maintained at 1500 K for homogenization for 3 h. The crystallization process was conducted using seeds oriented along the crystallographic direction [010], which were previously obtained from spontaneous crystallization of melt DyF₃. The crucible pulling rate was 3 mm/h at temperature gradient in the growth zone at 60 K/cm. The graphite crucible of special design was used, which makes it possible to decrease the weight losses of the reagent for evaporation, which did not exceed 0.5 wet.% of the initial charge mass. After crystallization, growth boules were obtained with diameter 10-15 mm and length of up to 30 mm (Figure 1). The content of oxygen impurities in the crystals did not exceed 150 ppm (measured by method of melting in the medium of inert gas on analyzer LECO ONH836). Orientation of specimens for electrophysical studies was conducted with account of their ideal cleavage in the crystallographic plane(010) [20,28].

Crystals DyF₃ are related to orthorhombic crystal system, space group Pnma, with the number of formula units per lattice cell equal to 4. The refined lattice parameters $a=6.4603(2),\ b=6.9104(1),\ c=4.3808(2)$ Å (powder X-ray diffractometer Rigaku MiniFlex 600, radiation CuK_{α}) agree well with the structural data [25,29,30].

Ionic conductivity σ_{dc} was defined from the spectra of complex impedance $Z^*(\omega)$ in the frequency range $5-5\cdot 10^5$ Hz (Tesla BM-507 device). The description of the experimental setup (own design and manufacture by the Special Design Bureau of the Institute of Crystallography, Moscow) and the method of electrophysical measurements are given in [31,32]. For conductometric measurements, flat parallel specimens were cut from a boule with thickness

Figure 1. Orientation temperature dependences of ionic conductivity $\sigma_{dc}(T)$ and appearance of single crystals DyF₃.

of 2-3 mm, oriented along and perpendicularly to the crystallographic axis b. The ion-blocking electrodes were graphite paste DAG-580, the surface area of electrodes was 25-55 mm².

Measurements of impedance $Z^*(\omega) = \text{Re}[Z^*] + j \text{ Im}[Z^*]$ (j — imaginary unit) of electrochemical system $C|\text{DyF}_3|C$ were conducted in vacuum $\sim 0.1\,\text{Pa}$ in the temperature range $428-783\,\text{K}$ in the cooling mode. The presence of the blocking effect from inert (graphite) electrodes in the spectra of impedance $Z^*(\omega)$ of the electrochemical cell $C|\text{DyF}_3|C$ indicates the ion nature of electroconductivity of DyF_3 crystals. In [33,34] it is shown that the electron conductivity of REE trifluorides is insignificant. In virtue of significant difference in charges Dy^{3+} and F^- the mobility of triple-charged cations Dy^{3+} is unlikely, therefore ion transport is caused by mobile defects in the anionic (fluorine) sublattice. The results of the study ^{19}F NMR [8,11,35,36]

method indicate directly that the ion transfer in REE trifluorides occurs in the fluorine sublattice.

Bulk resistance R_b of specimens was determined using the crossing of the complex impedance hodograph $Z^*(\omega)$ with the axis of active resistances $\text{Re}[Z^*(\omega)]$. The specific ion electroconductivity of specimens was calculated with account of their geometric dimensions:

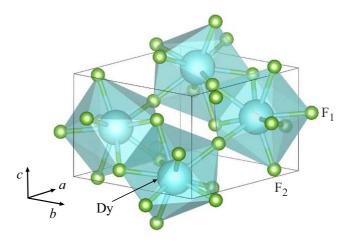
$$\sigma_{dc} = (h/S)R_b^{-1},\tag{1}$$

where h — thickness, S — electrode surface area. Relative measurement error σ_{dc} did not exceed 5%. Temperature dependence of ion conductivity $\sigma_{dc}(T)$ was described by Arrhenius-Frenkel equation:

$$\sigma_{dc}T = A \exp(-\Delta H_{\sigma}/kT), \qquad (2)$$

where A — pre-exponential factor of ionic conductivity, ΔH_{σ} — enthalpy of ion transfer process activation, k — Boltzmann constant and T — temperature.

3. Results and discussion


Temperature dependences of ionic conductivity of DyF₃ crystals along and perpendicularly to axis b of the lattice cell are shown in Figure 1. Further, when the conductivity is specified in crystallographic directions, we will omit dc index. Maximum values σ_{dc} are observed along axis b. Temperature dependences $\sigma_{\parallel b}(T)$ and $\sigma_{\perp b}(T)$ are broken into two sections at $T_0\approx 550$ K. In each section the dependences $\sigma_{\parallel b}(T)$ and $\sigma_{\perp b}(T)$ are described by equation (2). Bends in dependences $\sigma_{\parallel b}(T)$ and $\sigma_{\perp b}(T)$ at $T=T_0$ indicate the change of the ion transfer mechanism in this temperature area.

Parameters of ion transfer in dysprosium trifluoride for two crystallographic directions are given in Table 1. Enthalpies of ion transport activation at high- and low-temperature sections for DyF₃ (Table 1) agree well with the values $\Delta H_{\sigma,1} = 0.65 - 0.75$ eV and $\Delta H_{\sigma,2} = 0.37 - 0.45$ eV for previously studied compounds RF_3 (R = Tb, Ho, Er, Y) with the structure of type β -YF₃ [13–16].

For the studied REE trifluorides with structures β -YF₃ and LaF₃ (space group $P\overline{3}c1$) the condition $\Delta H_{\sigma,1} > \Delta H_{\sigma,2}$ is met, which is due to the participation of fluorine vacancies of various crystallographic positions in the ion transfer mechanism for low- and high-temperature areas of electroconductivity [8–16,37].

As you can see in Figure 1, in the temperature interval of $386-829\,\mathrm{K}$ crystals $\mathrm{DyF_3}$ have minor anisotropy of ion conductivity $\sigma_{\parallel b}/\sigma_{\perp b}=2.2\pm0.1$. In isostructural solid solution $\mathrm{Gd_{0.5}Y_{0.5}F_3}$ it practically disappears: $\sigma_{\parallel b}/\sigma_{\parallel a}=\sigma_{\parallel b}/\sigma_{\parallel c}=1.1$ [14,17].

According to the results of the studies [13–16,35] in closely-packed orthorhombic structures RF_3 with β -YF₃ structure, point defects are formed according to Schottky mechanism (cation and fluorine vacancies). Besides, the mobile charge carriers are vacancies of fluorine that

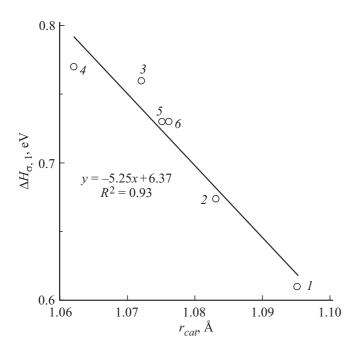
Figure 2. Unit cell of crystal DyF₃ (type β -YF₃, space group Pnma).

determine the ion electroconductivity mechanism. The vacancy mechanism of ion electroconductivity is related to the translational jumps of fluorine ions in the vacant structural positions in the crystalline lattice.

Table 2 provides experimental data [8–15,38] on anisotropy of ionic conductivity of crystals RF_3 with structures β -YF₃ and LaF₃. You can see that anisotropic effect of ion transfer for REE trifluorides DyF₃ (TbF₃, HoF₃) and LaF₃ (CeF₃), crystallizing in various structural types, is rather weak.

Besides, in REE trifluorides the path of highest ion conductivity has crystallographic directivity: axis b of orthorhombic lattice cell (type β -YF₃) and axis c of trigonal lattice cell (type LaF₃). Maximum values of ionic conductivity along axis b (space group Pnma) and axis c (space group $P\overline{3}c1$) were provided by highest value of fluorine ion mobility in these directions, since the lattice parameters b and c have maximum values for orthorhombic and trigonal unit cells, accordingly. A low value of anisotropy of ionic conductivity in all studied crystals RF_3 with structures β -YF₃ and LaF₃ indicates three-dimensional 3D-nature of ion transport and absence of dedicated conductivity channels in these structures.

In the structural motif β -YF₃ (Figure 2) along axis b the anionic layers formed by atoms F₁, and cation-anion layers containing REE atoms and F₂ alternate. Ratio of anions of different types in a lattice cell β -YF₃ is equal to F₁: F₂ = 2:1. According to [13,15] at $T < T_0$ in crystals with structure β -YF₃ the anion transfer occurs in the fluorine subsystem F₁, at $T \approx T_0$ there is exchange of fluorine vacancies between subsystems F₁ and F₂, at $T > T_0$ the anion transfer happens in all fluorine positions.


Figure 3 shows dependence of enthalpy of ion transfer activation in low-temperature area $\Delta H_{\sigma,1}$ on the value of ion radius of rare-earth cations r_{cat} for orthorhombic REE trifluorides that belong to groups III and IV of homologous series of REE trifluorides. The analysis of conductometric

Crystal	Structure type	r**, Å	Т, К	σ_{dc} , S/cm/ $\Delta H_{\sigma,1}$, eV	Coefficient of anisotropy $\sigma_{\parallel b}/\sigma_{\perp b},\sigma_{\parallel c}/\sigma_{\perp c}$	Reference
TbF ₃		1.095	500	$8 \cdot 10^{-6} \ (\sigma_{\parallel b}) / 0.61$	2	[13]
DyF ₃	Type β -YF ₃ ,	1.083	500	$2.5 \cdot 10^{-6} \ (\sigma_{\parallel b})/0.674$	2.3	this study
HoF ₃	space group Pnma	1.072	500	$5 \cdot 10^{-6} \ (\sigma_{\parallel b}) / 0.765$	1	[15]
$Gd_{0.5}Y_{0.5}F_3^*$		1.091	500	$1.6 \cdot 10^{-5} \ (\sigma_{\parallel b})/0.73$	1.1	[14]
LaF ₃			500	$1.5 \cdot 10^{-3} \ (\sigma_{\parallel c})$	1.6	[8]
	Type LaF ₃ , space group $P\overline{3}c1$	1.216	500	$3\cdot 10^{-4}~(\sigma_{\parallel c})$	4	[10]
			300	$1\cdot 10^{-6}~(\sigma_{\parallel c})$	1.6	[9]
			300	$7 \cdot 10^{-7} \ (\sigma_{\parallel c}) / 0.3 - 0.4$	2	[11]
CeF ₃		1.196	500	$5.6 \cdot 10^{-4} \ (\sigma_{\parallel c})/0.44$	2.4	[12]

Table 2. Comparison of anisotropy of ionic conductivity of REE trifluoride crystals with structure β -YF₃ and LaF₃

Note: * solid solution, ** values r_{cat} , are given in the system of "effective ion radii" for CN = 9 [38].

data shows the following trend. As the value of REE cation radius increases, enthalpy of ion transfer activation (vacancy mechanism) decreases, which causes increase of crystal ionic conductivity. Crystal TbF₃ has the maximum value of ion electroconductivity. Similar pattern of ionic conductivity value change depending on REE cation radius is found for crystals KR_3F_{10} (R = Tb, Dy, Ho, Y) [39].

Figure 3. Dependence of enthalpy of ion transport activation $\Delta H_{\sigma,1}$ (low-temperature area) on the value of ion radius of rare-earth cations r_{cat} for compounds TbF₃ [13] (1), DyF₃ (2), HoF₃ [15] (3), modifications β -ErF₃ [14] (4), β -YF₃ [14] (5) and solid solution Gd_{0.3}Er_{0.7}F₃ [14] (6). Line — approximation of experimental data by linear equation ($x = \Delta H_{\sigma,1}$, $y = r_{cat}$, R — correlation coefficient).

Large REE cations (R=Tb) increase the volume of the lattice cell of crystals with structure β -YF₃, which causes reduction of enthalpy of anion transfer activation and, as a result, increase of fluorine-ion conductivity. The size effect is not very high. It causes the reduction in enthalpy of ion transfer activation by 0.16 eV and increase of conductivity at 500 K \sim 5 times.

It is necessary to highlight the high difference in the absolute value of ion conductivity of orthorhombic and tysonite REE trifluorides RF_3 (Table 2). From the crystallochemical positions, it is explained by reduction of coordination number (CN) of REE cations R^{3+} for structural type β -YF₃ compared to tysonite type [40]. The typical anion polyhedron of cation R^{3+} is trigonal prism providing for minimum CN = 6. The method of spatial location of such prisms causes increase in CN = 9 for structure of type β -YF₃ and CN =11 for tysonite-type structures. In structure β -YF₃ (contrary to structure LaF₃) the formation of anion-deficient solid solutions $R_{1-y}M_yF_{3-y}$ [40], and, therefore, the appearance of mobile anion vacancies are complicated.

Since the area of solubility of heterovalent impurities in compounds with structure β -YF₃ is practically absent, this does not allow for increasing the value of ionic conductivity therein by heterovalent doping as it may be done in the case of tysonite-type solid solutions $\mathrm{Dy}_{1-y}M_y\mathrm{F}_{3-y}$ ($M=\mathrm{Ca}$, Sr) [41,42].

4. Conclusion

The techique of directional crystallization was used to grow oriented single crystals DyF_3 — representative of structural group III from a large homologous series of REE trifluorides. Dysprosium trifluoride unit cell parameters are equal to a = 6.4603(2), b = 6.9104(1), c = 4.3808(2) Å.

Temperature measurements of ionic conductivity $\sigma_{dc}(T)$ of crystallographically oriented specimens DyF₃ were carried out. Low anisotropy of anion conductivity DyF₃ with coefficient $\sigma_{\parallel b}/\sigma_{\perp b}=2.2\pm0.1$ was found. Maximum ionic conductivity is observed along axis b: $\sigma_{\parallel b}=2.5\cdot10^{-6}$ S/cm at 500 K. Orthorhombic REE trifluorides with structure β -YF₃ from group III, same as the trigonal REE trifluorides with structure LaF₃ from group I, have practically three-dimensional ion 3*D*-conductivity: $\sigma_{\parallel b,c}/\sigma_{\perp b,c}=2-4$ at 300–500 K.

It was shown that in the family of orthorhombic RF_3 , including compounds of group III and low-temperature modifications of group IV, as the value of ion radius increased in REE cations, the enthalpy of fluorine-ion transport activation decreased, which caused increase in their ionic conductivity.

Funding

This study was carried out under the state assignment of the National Research Center "Kurchatov Institute".

Conflict of interest

The authors declare no conflict of interest.

References

- [1] A.K. Ivanov-Shits, I.V. Murin. Ionika tverdogo tela. Tom 2. Izd-vo SPbU, SPb (2010). 1000 s. (in Russian).
- [2] B.P. Sobolev. The Rare Earth Thrifluorides. Part II. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals. Institute of Crystallography, Moscow, and Institut d'Estudis Catalans. Barcelona. Spain. 2001. 460 p.
- [3] A. Düvel, J. Bednarcik, V. Sepelak, P. Heitjans. J. Phys. Chem.
 C. 118, 13, 7117 (2014). https://doi.org/10.1021/jp410018t
- [4] C. Rongeat, M. Anji Reddy, R. Witter, M. Fichtner. ACS Appl. Mater. Interfaces 6, 2103 (2014). https://doi.org/10.1021/am4052188
- [5] O. Greis, J.M. Haschke. Rare Earth Fluorides. In: Handbook on the Physics and Chemistry of Rare Earths (chapter 45), K.A. Gschneidner, L. Eyring (Eds.). Elsevier North-Holland, Amsterdam. 5, 387 (1982). https://doi.org/10.1016/S0168-1273(82)05008-9
- [6] B.P. Sobolev. Crystallogr. Rep. 64, 5, 713 (2019). https://doi.org/10.1134/S1063774519050183
- [7] S.S. Batsanov, E.V. Dulepov, L.I. Kozhevina. Zhurn. strukt. khimii **8**, *4*, 714 (1967). (in Russian).
- [8] A.V. Chadwick, D.S. Hope, G. Jaroszkiewicz, J.H. Strange. In: Fast Ion Transport in Solids, P. Vashishta, N. Mundy, G.K. Shenoy (Eds.). Elsevier North-Holland, Amsterdam. (1979). P. 683.
- [9] A. Roos, F.C.M. van de Pol, J. Schoonman. Solid State Ionics. 13, 1913 (1984).
- [10] C. Hoff, H.D. Wiemhofer, O. Glumov, I.V. Murin. Solid State Ionics 101–103, 445 (1997).
- [11] V.V. Sinitsyn, O. Lips, A.F. Privalov, F. Fijara, I.V. Murin. J. Phys. Chem. Solids 64, 1201 (2003). https://doi.org/10.1016/S0022-3697(03)00050-7

- [12] N.I. Sorokin, V.V. Grebenev, D.N. Karimov. FTT 63, 9, 1376 (2021). (in Russian). https://doi.org/10.21883/FTT.2021.09.51313.054
- [13] N.I. Sorokin, D.N. Karimov, B.P. Sobolev. Kristallografiya 64, 4, 596 (2019). (in Russian). https://doi.org/10.1134/S0023476119040222
- [14] V. Trnovcova, P.P. Fedorov, M.D. Valkovskii, T. Sramkova, A.A. Bystrova, B.P. Sobolev. Ionics 3, 313 (1997).
- [15] N.I. Sorokin, B.P. Sobolev, M. Breiter. FTT 44, 2, 272 (2002). (in Russian).
- [16] V. Trnovcova, P.P. Fedorov, B.P. Sobolev, K.B. Seyranyan, S.A. Oganesyan, M.D. Valkovsky. Kristallografiya 41, 4, 731 (1996). (in Russian).
- [17] V. Trnovcova L. Mitas, C. Jeskova, P.P. Fedorov, B.P. Sobolev. Extended Abstracts. 6th Inter. Conf. on Solid State Ionics. Garmisch-Partenkirchen, Germany (1987). P. 236.
- [18] F.H. Spedding, B.J. Beaudry, D.C. Henderson, J. Moorman. J. Chem. Phys. **60**, *4*, 1578 (1974). https://doi.org/10.1063/1.1681233
- [19] G. Garton, P.J. Walker. Mater. Res. Bull. **13**, *2*, 129 (1978). https://doi.org/10.1016/0025-5408(78)90077-6
- [20] J. Anders., N. Limberg, B. Paulus. Materials 15, 17, 6048 (2022). https://doi.org/10.3390/ma15176048
- [21] O. Greis, M.S.R. Cader. Thermochim. Acta 87, 145 (1985). https://doi.org/10.1016/0040-6031(85)85329-6
- [22] A.V. Savinkov, S.L. Korableva, A.A. Rodionov, I.N. Kurkin, B.Z. Malkin, M.S. Tagirov, H. Suzuki, K. Matsumoto, S. Abe. J. Phys. Condens. Matter. 20, 48, 485220 (2008). https://doi.org/10.1088/0953-8984/20/48/485220
- [23] A. Kawashima, T. Nakanishi, Y. Kitagawa, K. Fujita, K. Tanaka, K. Fushimi, M.A. Malik, P. O'Brien, Y. Hasegawa. Bull. Chem. Soc. Jpn. 88, 10, 1453 (2015). https://doi.org/10.1246/bcsj.20150198
- [24] D. Vojna, D.N. Karimov, A.G. Ivanova, P.A. Popov, H. Kumai, R. Yasuhara, O. Slezák, M. Smrž, T. Mocek. Opt. Mater. 142, 114016 (2023). https://doi.org/10.1016/j.optmat.2023.114016
- [25] U.V. Valiev, D.N. Karimov, G.W. Burdick, R. Rakhimov, V.O. Pelenovich, D. Fu. J. Appl. Phys. 121, 24, 243105 (2017). https://doi.org/10.1063/1.4989839
- [26] C. Saliman. Nucl. Instr. Meth. B. 267, 14, 2423 (2009). https://doi.org/10.1016/j.nimb.2009.05.001
- [27] D.N. Karimov, I.I. Buchinskaya, A.V. Koshelev, N.V. Samsonova, P.A. Popov. Crystallogr. Rep. 66, 6, 1113 (2021). https://doi.org/10.1134/S1063774521060171
- [28] D.N. Karimov, N.L. Sizova, B.P. Sobolev, D.S. Lisovenko. Crystallogr. Rep. 63, 6, 96 (2018). https://doi.org/10.1134/S1063774518010108
- [29] B.P. Sobolev; E.A. Sulyanova. Int. J. Mol. Sci. **24**, 17080 (2023). https://doi.org/10.3390/ijms242317080
- [30] O. Greis, T. Petzel. Z. anorgan. und allgem. Chem. 403, 1, 1 (1974).
- [31] D.N. Karimov, N.I. Sorokin. Solid State Ionics **417**, 116710 (2024). https://doi.org/10.1016/j.ssi.2024.116710
- [32] A.K. Ivanov-Shits, N.I. Sorokin, P.P. Fedorov, B.P. Sobolev. FTT **25**, *6*, 1748 (1983). (in Russian).
- [33] A. Roos, J. Schoonman. Solid State Ionics 1984. 13, 205 (1984).
- [34] N.I. Sorokin, B.P. Sobolev. FTT **61**, *1*, 53 (2019). (in Russian). https://doi.org/10.21883/FTT.2019.01.46893.181
- [35] A.I. Livshits, V.M. Buznik, P.P. Fedorov, B.P. Sobolev. Yaderniy magnitniy rezonans v kristallakh. Krasnoyarsk. (1978). S. 90. (in Russian).

- [36] F. Wang, C. Grey. Chem. Mater. 9, 1068 (1997).
- [37] N.I. Sorokin. Kristallografiya, **68**, *1*, 58 (2023). (in Russian). https://doi.org/10.31857/S0023476123010253
- [38] R.D. Shannon. Acta Crystallogr. A. **32**, *5*, 751 (1976). https://doi.org/10.1107/S0567739476001551
- [39] D.N. Karimov, I.I. Buchinskaya, N.I. Sorokin. Zeitschrift für Kristallographie **237**, *10*–*12*, 429 (2022). https://doi.org/10.1515/zkri-2022-0032
- [40] V. Trnovcova, L.S. Garashina, A. Skubla, P.P. Fedorov, R. Cicka, E.A. Krivandina, B.P. Sobolev. Solid State Ionics 2003. 57, 195 (2003). https://doi.org/10.1016/S0167-2738(02)00209-6
- [41] N.I. Sorokin, B.P. Sobolev. FTT **50**, *3*, 402 (2008). (in Russian).
- [42] N.I. Sorokin, B.P. Sobolev. Elektrokhimiya 43, 4, 420 (2007).

Translated by M.Verenikina