The structural electronic and thermodynamical properties of lithium-intercalated vanadium pentoxide
Roginskii E.M.
1, Savin A.V.1, Pankrushina E. A.2
1Ioffe Institute, St. Petersburg, Russia
2
Email: e.roginskii@mail.ioffe.ru, Aleksandr.Savin@mail.ioffe.ru, lizaveta.94@list.ru
The structural modifications of lithium-intercalated vanadium pentoxide are studied in detail. The dynamical, electronic, and thermodynamical properties of these materials are obtained using ab initio calculations. As a result, the structure and symmetry of the delta- and epsilon-Li-V2O5 polymorph are refined. The fingerprints in the high-frequency range of Raman spectrum which allows identifying the polymorph during the intercalation process is revealed. The calculation of thermodynamic properties within the quasi-harmonic approximation is performed. As a result, the main thermodynamic characteristics are obtained and the value of thermal conductivity for both the original vanadium pentoxide and the lithium-intercalated structure is estimated. It was found that the intercalation of the structure leads to a decrease in the phonon transport properties. Keywords: cathodes, vanadium bronzes, thermodynamics.
- M.S. Whittingham. J. Electrochem. Soc. 123, 315 (1976)
- E. Esparcia, J. Joo, J. Lee. CrystEngComm 23, 5267 (2021)
- C. Satto, P. Sciau, E. Dooryhee, J. Galy, P. Millet. J. Solid State Chem. 146, 103 (1999)
- J. Cocciantelli, M. Menetrier, C. Delmas, J. Doumerc, M. Pouchard, P. Hagenmuller. Solid State Ion. 50, 99 (1992)
- S. Caes, J.C. Arrebola, N. Krins, P. Eloy, E.M. Gaigneaux, C. Henrist, R. Cloots, B. Vertruyen. J. Mater. Chem. A 2, 5809 (2014)
- R. Cava, A. Santoro, D. Murphy, S. Zahurak, R. Fleming, P. Marsh, R. Roth. J. Solid State Chem. 65, 63 (1986)
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. C.ot.e, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. Verstraete, G. Zerah, J. Zwanziger. Comput. Phys. Commun. 180, 2582 (2009)
- J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke. Phys. Rev. Lett. 100, 136406 (2008)
- A.I. Liechtenstein, V.I. Anisimov, J. Zaanen. Phys. Rev. B 52, R5467 (1995)
- D.R. Hamann. Phys. Rev. B 88, 085117 (2013)
- H.J. Monkhorst, J.D. Pack. Phys. Rev. B: Condens. Matter Mater. Phys. 13, 5188 (1976)
- M. Born, R. Huang. Dynamical Theory of Crystal lattices, Oxford University Press (1954)
- M.B. Smirnov, E.M. Roginskii, V.Y. Kazimirov, K.S. Smirnov, R. Baddour-Hadjean, J.P. Pereira-Ramos, V.S. Zhandun. J. Phys. Chem. C 119, 20801 (2015)
- X. Shan, S. Kim, A.M.M. Abeykoon, G. Kwon, D. Olds, X. Teng. ACS Appl. Mater. Interfaces 12, 54627 (2020)
- B. Zhou, D. He. J. Raman Spectrosc. 39, 1475 (2008)
- E.M. Roginskii, M.B. Smirnov, K.S. Smirnov, R. Baddour-Hadjean, J.-P. Pereira-Ramos, A.N. Smirnov, V.Y. Davydov. J. Phys. Chem. C 125, 5848 (2021)
- R. Baddour-Hadjean, E. Raekelboom, J.P. Pereira-Ramos. Chem. Mater. 18, 3548 (2006)
- C.T. Anderson. J. Am. Chem. Soc. 58, 564 (1936)
- W.M. Haynes. CRC Handbook of chemistry and physics, CRC Press, 95 edition (2014)
- Q. Liu, Z. Chen, X. Zhou. ACS Omega 7, 11643 (2022)
- D.T. Morelli, G.A. Slack. High lattice thermal conductivity solids in high thermal conductivity materials, Springer-Verlag (2006)
- V.I. Fyodorov, I.Ya. Davydov. Teplofizicheskiye svoistva veschestv 16, 765 (1978). (in Russian)