Physics of the Solid State
Volumes and Issues
The structural electronic and thermodynamical properties of lithium-intercalated vanadium pentoxide
Roginskii E.M. 1, Savin A.V.1, Pankrushina E. A.2
1Ioffe Institute, St. Petersburg, Russia
2
Email: e.roginskii@mail.ioffe.ru, Aleksandr.Savin@mail.ioffe.ru, lizaveta.94@list.ru

PDF
The structural modifications of lithium-intercalated vanadium pentoxide are studied in detail. The dynamical, electronic, and thermodynamical properties of these materials are obtained using ab initio calculations. As a result, the structure and symmetry of the delta- and epsilon-Li-V2O5 polymorph are refined. The fingerprints in the high-frequency range of Raman spectrum which allows identifying the polymorph during the intercalation process is revealed. The calculation of thermodynamic properties within the quasi-harmonic approximation is performed. As a result, the main thermodynamic characteristics are obtained and the value of thermal conductivity for both the original vanadium pentoxide and the lithium-intercalated structure is estimated. It was found that the intercalation of the structure leads to a decrease in the phonon transport properties. Keywords: cathodes, vanadium bronzes, thermodynamics.
  1. M.S. Whittingham. J. Electrochem. Soc. 123, 315 (1976)
  2. E. Esparcia, J. Joo, J. Lee. CrystEngComm 23, 5267 (2021)
  3. C. Satto, P. Sciau, E. Dooryhee, J. Galy, P. Millet. J. Solid State Chem. 146, 103 (1999)
  4. J. Cocciantelli, M. Menetrier, C. Delmas, J. Doumerc, M. Pouchard, P. Hagenmuller. Solid State Ion. 50, 99 (1992)
  5. S. Caes, J.C. Arrebola, N. Krins, P. Eloy, E.M. Gaigneaux, C. Henrist, R. Cloots, B. Vertruyen. J. Mater. Chem. A 2, 5809 (2014)
  6. R. Cava, A. Santoro, D. Murphy, S. Zahurak, R. Fleming, P. Marsh, R. Roth. J. Solid State Chem. 65, 63 (1986)
  7. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. C.ot.e, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. Verstraete, G. Zerah, J. Zwanziger. Comput. Phys. Commun. 180, 2582 (2009)
  8. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke. Phys. Rev. Lett. 100, 136406 (2008)
  9. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen. Phys. Rev. B 52, R5467 (1995)
  10. D.R. Hamann. Phys. Rev. B 88, 085117 (2013)
  11. H.J. Monkhorst, J.D. Pack. Phys. Rev. B: Condens. Matter Mater. Phys. 13, 5188 (1976)
  12. M. Born, R. Huang. Dynamical Theory of Crystal lattices, Oxford University Press (1954)
  13. M.B. Smirnov, E.M. Roginskii, V.Y. Kazimirov, K.S. Smirnov, R. Baddour-Hadjean, J.P. Pereira-Ramos, V.S. Zhandun. J. Phys. Chem. C 119, 20801 (2015)
  14. X. Shan, S. Kim, A.M.M. Abeykoon, G. Kwon, D. Olds, X. Teng. ACS Appl. Mater. Interfaces 12, 54627 (2020)
  15. B. Zhou, D. He. J. Raman Spectrosc. 39, 1475 (2008)
  16. E.M. Roginskii, M.B. Smirnov, K.S. Smirnov, R. Baddour-Hadjean, J.-P. Pereira-Ramos, A.N. Smirnov, V.Y. Davydov. J. Phys. Chem. C 125, 5848 (2021)
  17. R. Baddour-Hadjean, E. Raekelboom, J.P. Pereira-Ramos. Chem. Mater. 18, 3548 (2006)
  18. C.T. Anderson. J. Am. Chem. Soc. 58, 564 (1936)
  19. W.M. Haynes. CRC Handbook of chemistry and physics, CRC Press, 95 edition (2014)
  20. Q. Liu, Z. Chen, X. Zhou. ACS Omega 7, 11643 (2022)
  21. D.T. Morelli, G.A. Slack. High lattice thermal conductivity solids in high thermal conductivity materials, Springer-Verlag (2006)
  22. V.I. Fyodorov, I.Ya. Davydov. Teplofizicheskiye svoistva veschestv 16, 765 (1978). (in Russian)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru