Polarimetric atom interferometer
Muradyan A. Zh.1
1Institute of Physics, Yerevan State University, Yerevan, Republic of Armenia
Email: muradyan@ysu.am

PDF
In the currently operating light-pulse atom interferometers, the input wave of an atomic matter is split into two components, which then recombine and interfere at the output ports. The interference determines the probability of which port the atom will be registered at. The angle of a single splitting process is very small, and therefore the deflection process is repeated many times. In addition, due to the probabilistic nature of detecting an atom at a particular port, the measurement process must be repeated many times under identical initial conditions. In this paper, a new type of atomic interferometer is proposed, in which the traditional method of measuring the state of an atom is replaced by a highly sensitive method of polarization spectroscopy using the working substance of a clot of atomic condensate. As a result, the proposed design frees the interferometer from the need for the above-mentioned multiple repetitions, while maintaining a high level of sensitivity. Kapitza-Dirac resonance diffraction is used to split the translational motion of an atom. Numerical calculations for determining the rotated component of the probing field show that the ratio of the output signal to the input signal under usual conditions of a specialized laser physics laboratory using a bunch of alkali metal atomic condensate with a concentration of 1010 cm-3 and linear dimensions of about 10 μm reaches a value of 0.1. Keywords: atom interferometer, polarization spectroscopy, atomic condensate, Kapitza-Dirac diffraction.
  1. B.Ya. Dubetskii, A.P. Kazantsev, V.P. Chebotaev, V.P. Yakovlev. Sov. Phys. JETP, 62 (4), 685 (1985)
  2. B.Ya. Dubetskii, A.P. Kazantsev, V.P. Chebotaev, V.P. Yakovlev, JETP Lett., 39 (11), 649 (1984)
  3. Atom Interferometry, ed. by P.R. Berman (Academic Press, San Diego, CA, USA, 1997). DOI: 10.1016/B978-0-12-092460-8.X5000-0
  4. M. Kasevich, S. Chu. Phys. Rev. Lett., 67 (2), 181 (1991). DOI: 10.1103/PhysRevLett.67.181
  5. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard. Rev. Mod. Phys., 81 (3), 1051 (2009). DOI: 10.1103/RevModPhys.81.1051
  6. F.A. Narducci, A.T. Black, J.H. Burke. Adv. Phys. X, 7 (1), 1946426 (2022). DOI: 10.1080/23746149.2021.1946426
  7. L. Pezze, A. Smerzi, M.K. Oberthaler, R. Schmied, P. Treutlein. Rev. Mod. Phys., 90 (3), 035005 (2018). DOI: 10.1103/RevModPhys.90.035005
  8. C.L. Degen, F. Reinhard, P. Cappellaro. Rev. Mod. Phys., 89 (3), 035002 (2017). DOI: 10.1103/RevModPhys.89.035002
  9. M. Abe, P. Adamson, M. Borcean, D. Bortoletto, K. Bridges, S.P. Carman, S. Chattopadhyay, J. Coleman, N.M. Curfman, K. DeRose et al. Quant. Sci. Technol., 6 (4), 044003 (2021). DOI: 10.1088/2058-9565/abf719
  10. M. Cadoret, E. de Mirandes, P. Clad'e, S. Guellati-Kh'elifa, C. Schwob, F. Nez, L. Julien, F. Biraben. Phys. Rev. Lett., 101 (23), 230801 (2008). DOI: 10.1103/PhysRevLett.101.230801
  11. J. Rudolph, T. Wilkason, M. Nantel, H. Swan, C.M. Holland, Y. Jiang, B.E. Garber, S.P. Carman, J.M. Hogan. Phys. Rev. Lett., 124 (8), 083604 (2020). DOI: 10.1103/PhysRevLett.124.083604
  12. J. von Neumann. Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, 1955)
  13. H.M. Wiseman, G.J. Milburn. Quantum measurement and control (Cambridge University Press, Cambridge, 2010). DOI: 10.1017/CBO9780511813948
  14. M.G. Ivanov. Kak ponimat' kvantovuyu mekhaniku (NITs "Regulyarnaya i khaoticheskaya dinamika," Institut komp'yuternykh issledovanii, Moskva-Izhevsk, 2015) (in Russian)
  15. C. Wieman, T.W. Hansch. Phys. Rev. Lett., 36 (20), 1170 (1976). DOI: 10.1103/PhysRevLett.36.1170
  16. A.Zh. Muradyan, L.S. Petrosyan. Opt. Spetrosk., 65 (3), 605 (1988)
  17. W. Demtroder. Basic Concepts and Instrumentation (Springer, Berlin, Heidelberg, Germany, 1996), 10.3. DOI: 10.1007/978-3-662-08260-7
  18. M. Born, E. Wolf. Principles of Optics (Pergamon, 1970), para. 12.2.7
  19. V.M. Arutyunyan, A.Zh. Muradyan. Dokl. Akad. Nauk Arm. SSR, 60 (5), 275 (1975)
  20. R.J. Cook, A.F. Bernhardt. Phys. Rev. A, 18 (6), 2533 (1978). DOI: 10.1103/PhysRevA.18.2533
  21. A.Zh. Muradyan, H.I. Haroutyunyan. Phys. Rev. A, 62 (1), 013401 (2000). DOI: 10.1103/PhysRevA.62.013401

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru