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Polarimetric atom interferometer
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In the currently operating light-pulse atom interferometers, the input wave of an atomic matter is split into two

components, which then recombine and interfere at the output ports. The interference determines the probability

of which port the atom will be registered at. The angle of a single splitting process is very small, and therefore

the deflection process is repeated many times. In addition, due to the probabilistic nature of detecting an atom at

a particular port, the measurement process must be repeated many times under identical initial conditions. In this

paper, a new type of atomic interferometer is proposed, in which the traditional method of measuring the state of

an atom is replaced by a highly sensitive method of polarization spectroscopy using the working substance of a

clot of atomic condensate. As a result, the proposed design frees the interferometer from the need for the above-

mentioned multiple repetitions, while maintaining a high level of sensitivity. Kapitza-Dirac resonance diffraction is

used to split the translational motion of an atom. Numerical calculations for determining the rotated component of

the probing field show that the ratio of the output signal to the input signal under usual conditions of a specialized

laser physics laboratory using a bunch of alkali metal atomic condensate with a concentration of 1010 cm−3 and

linear dimensions of about 10 µm reaches a value of 0.1.
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Introduction

A light-pulse atomic interferometer [1–6] is an advanced

instrument of quantum metrology and quantum prob-

ing [7–9] that relies on the wave nature of matter. Just as

in common optical interferometers, an atomic wave packet

is split in it into two paths, which are then reflected and

recombined. The splitting angle is formed here via Raman

photon scattering. Therefore, it is very small and needs to

be increased through careful accumulation of numerous (up
to several hundred) interaction events [10,11].

The detection method is another aspect that distinguishes

an atomic interferometer qualitatively from traditional ones.

Drawing directly from the standard quantum measure-

ment theory [12–14], experimenters determine the phase

difference here by counting the atoms detected at their

ground and excited internal energy levels (output ports).
The probabilistic nature of such measurements necessitates

multiple repetitions of the entire interaction cycle under

identical initial conditions.

A new atomic interferometer design presented below

differs form the earlier ones in that the output state of an

atom is determined not by counting atoms at two output

ports of the interferometer with multiple repetition, but in

a single act of highly sensitive polarization spectroscopy of

the probing field [15–17]. Another feature of the proposed

design is that the interference of atomic waves is established

not due to the spatial overlap of two previously separated

trajectories, but due to optical transitions between two

discrete families of momentum states of translational motion

of an atom at its ground and excited internal states generated

by Kapitsa−Dirac diffraction.

The first stage of operation of this interferometer is the

generation of a family of equidistant momentum states

via diffraction of an atom by the resonant field of a

standing wave of laser radiation. To this end, the well-

known Raman−Nath approximation is extended to longer

interaction times, populating the ground and excited internal

states of the atom almost equally. At the second stage of

interaction, a traveling wave induces interference between

the families of momentum states of the ground and excited

internal states of the atom. The momentum distributions

at the lower and upper internal levels oscillate periodically

in the course of this interaction, shifting the distribution

centers in opposite directions. The subsequent probing field

propagates along the direction of standing and traveling

waves, interacts with the atomic ensemble, and projects

its states onto the spectrum of rotation of the polarization

plane of the probing field. The sought information on

residual interference of matter waves is presented in it in

the form of an asymmetrically distributed family of narrow

maxima that are shifted relative to each other due to the

Doppler effect. The use of this diagnostic method should

make it possible to simplify significantly the hardware

design of the atomic interferometer while preserving its high

accuracy.
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1. Generation and interference of
momentum states of an atom

1.1. Generation of momentum states of an atom
by the laser standing-wave field

Consider a two-level atom with mass M and optical

transition frequency ω0 interacting with a laser standing

wave with resonant frequency ω = ω0 and electric field

strength E . The evolution equations for this system are

well known and may be written as

(

i
∂

∂t
+

~

2M
∂2

∂z 2

)

g(z , t) = −2ζ cos kz e(z , t), (1a)

(

i
∂

∂t
+

~

2M
∂2

∂z 2

)

e(z , t) = −2ζ cos kz g(z , t), (1b)

where g(z , t) and e(z , t) are the atomic wave function

components

ψ(z , t) = g(z , t)ϕE e−iEg t + e(z , t)ϕ−iEe t
e ,

corresponding to the ground and excited internal states,

respectively; ζ = dE/~ is the Rabi frequency for traveling

waves that constitute a standing wave; d is the dipole matrix

element of the optical transition; and k = ω/c .
We also assume that the atom was at rest prior to the

interaction or had a discrete momentum distribution with a

pitch of ~k :

g(z , 0) =

∞
∑

n=−∞

f neinkz , e(z , 0) =

∞
∑

n=−∞

f̄ neindz .

The general solutions of Eqs. (1a), (1b) may then be sought

in the form

g(z , t) =

∞
∑

m,n=−∞

imgm(n, t)ei(m+n)kz−i(m+n)2ωr t,

e(z , t) =

∞
∑

m,n=−∞

imem(n, t)ei(m+n)kz−i(m+n)2ωr t, (2)

where m and n are the numbers of photon momenta

acquired in diffraction by a standing wave and present

in the initial state, respectively, and ωr = ~k2/2M is the

recoil frequency. The Schrödinger equation then yields

the following system of differential equations for the wave

functions included in expansion (2):

dgm(n, t)
dt

= ζ em−1(n, t)ei(2m+2n−1)ωr t

− ζ em+1(n, t)ei(2m+2n+1)ωr t,

(3a)

dem(n, t)
dt

= ζ gm−1(n, t)ei(2m+2n−1)ωr t

− ζ gm+1(n, t)ei(2m+2n+1)ωr t .

(3b)
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Figure 1. Typical form of the probability distribution of

momentum states for the ground (black circles) and excited (red
squares) internal states of an atom generated by a standing-wave

field.

Substitution t → t + 2π/ω does not alter these equations;

i.e., the sough solutions may be periodic with period

T = 2π/ωr .

Owing to the presence of time-dependent exponential

coefficients, recurrent system (3a), (3b) does not have

exact analytical solutions. The known Raman−Nath ap-

proximation [18–20] corresponds to setting the coefficients

to unity (i.e., (2m + 2n ± 1)ω, t ≪ 1) and is occasionally

called the approximation of short interaction times. We

adopt a less stringent interaction time constraint: ωr t ≪ 1.

The approximate solutions may then be written as

gm(n, t) = f n
1 + (−1)m

2
ei2(m+n)ωr t

× Jm

(

ζ

ωr (m + n)
sin(2ωr (m + n)t)

)

, (4a)

em(n, t) = f n
1− (−1)m

2
ei2(m+n)ωr t

× Jm

(

ζ

ωr (m + n)
sin(2ωr (m + n)t)

)

, (4b)

where the atom is assumed to remain in the ground state

prior to interaction and Jm(x) is the Bessel function. Note

that the solution has period T = 2π/ωr . Assuming that the

fulfillment of normalization condition

∞
∑

m,n=−∞

(

|gm(n, t)|2 + |en(n, t)|2
)

= 1

is an indicator of approximation validity, one may easily

verify that formulae (4a), (4b) are reliably applicable at

ζ t ≤ 27.

It is now possible to rewrite expressions (2) in a more

compact form:

g(z , t) =

∞
∑

i=−∞

g l(t)e
ilkz n−il2ωr t,
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e(z , t) =

∞
∑

i=−∞

el(t)e
ilkz−il2ωr t (5)

where functions

g1(t) = ei2lωr t
∞
∑

s=−∞

i
l−s
2 f l+s

2

1 + (−1)
l−s
2

2

× J l−s
2

(

ζ

ωr l
sin(2ωr lt)

)

,

e1(t) = ei2lωr t
∞
∑

s=−∞

i
l−s
2 f l+s

2

1− (−1)
l−s
2

2

× J l−s
2

(

ζ

ωr l
sin(2ωr lt)

)

,

are the probability amplitudes of l-photon momentum states.

They are shown in Fig. 1 (at ζ = 1.8 · 109 Hz, t = 10 ns). It
can be seen that the number of momentum states and the

approximately unvaried nature of their distribution are quite

sufficient for choosing the optimum scenario for subsequent

implementation and detection of interference of waves of

atomic matter.

2. Formation of asymmetry in the
momentum distribution of an atom

Immediately after the generation of momentum states (5),
an atom may remain in free motion for a certain time within

which

g(z , t) =

∞
∑

l=−∞

g l(t1)e
ilkz−il2ωr t,

e(z , t) =

∞
∑

l=−∞

el(t1)e
ilkz−il2ωr z , (6)

where t1 is the atom–standing wave interaction time. Further

interaction (starting from t2 ≥ t1) proceeds between the

atom and one of the counter-propagating waves (producing
a standing wave). It establishes pairwise mixing of

momentum states from the ground and excited levels of

the atom, which differ by one photon momentum, and thus

induces interference of these matter waves. The resulting

amplitudes of the momentum states in the wave function

g(z , t) =

∞
∑

l=−∞

g l(t)e
ilkz ,

e(z , t) =

∞
∑

l=−∞

el(t)e
ilkz (7)

are written as

g l(t) = c l,1e−iλl,1ω(t−t2) + c l,2e−iλ1,2ωr (t−t2),

el(t) = dl,1e−iµi,1ωr (t−t2) + dl,2e
−iµi,2ωr (t−t2), (8)

where

c l,1 = −
ξ∗el+1(t2) + (λl,2 − l2)g l(t2)

λl,1 − λl,2
,

c l,1 =
ξ∗el+1(t2) + (λl,1 − l2)g l(t2)

λl,1 − λl,2
, (9)

dl1 = −
ξg l−1(t2) + (µl,2 − l2)el(t2)

µl,1 − µl,2
,

dl2 =
ξg l−1(t2) + (µl,1 − l2)el(t2)

µl,1 − µl,2
,

λl,1(2) =
1

2
+ l + l2 ∓

√

1

4
+ l + l2 + |ξ |2,

µl,1(2) =
1

2
− l + l2 ∓

√

1

4
+ l + l2 + |ξ |2,

g l(t2) = ei2lωr t1−il2ωr t2
∞
∑

s=−∞

i
l−s
2 f l+s

2

×
1 + (−1)

l−s
2

2
J l−s

2

(

ξ

l
sin(2ωr lt1)

)

,

g l(t2) = ei2lωr t1−il2ωr t2
∞
∑

s=−∞

i
l−s
2 f l+s

2

×
1− (−1)

l−s
2

2
J l−s

2

(

ξ

l
sin(2ωr lt1)

)

,

and ξ = ζ /ωr . Formulae (7) and (8) (with the correspond-

ing notation) complete the description of generation and

interference of matter waves to be measured at the output

of the atomic interferometer.

It should be noted that the resulting momentum distri-

bution features two types of interference. One of them is

typical of the problem of scattering by a periodic potential

and is represented by the sum over momentum states in

the expression of wave function (7). The other is the key

dynamic process in the proposed atomic interferometer that

is represented by the sums of two terms in the numerators

of (9) and mixes the corresponding momentum states of the

ground and excited energy levels of the atom.

Polarimetric detection of the result

The polarimetric method may be used to measure

state (7) entangled between the translational and internal

degrees of freedom of an atom. In this approach, the

pump field of the standing and subsequent traveling waves

is circularly polarized and couples the magnetic sublevels

of a three-level atom (see Fig. 2). It equalizes roughly the

populations of the two sublevels and simultaneously forms a

discrete set of momentum states, which contain the desired

information on interference of waves of atomic matter, at

each of them. The probing field has a linear polarization,
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probe, – probe, +

pump

j  = –1/2z j  = 1/2z

1

2

3

Figure 2. A circularly polarized pump field induces optical

anisotropy (in particular, gyrotropy) in the atomic medium (a thin

layer of laser-cooled atoms), rotating the plane of polarization of

probing radiation.
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Figure 3. Temporal evolution of the average atomic momentum

at the excited (red solid curve) and ground (black dashed curve)
internal energy levels of an atom. The momenta are expressed in

units of photon recoil momentum. It is assumed that there is no

free propagation between the standing and traveling pump waves:

ωr t2 = ωr t1 = π10−3 and ζ = 104.

which is represented as the sum of two counter-rotating

circular polarizations.

The probing field has a linear polarization, which is

represented as the sum of two counter-rotating circu-

lar polarizations. The probing field component with

the pump field polarization activates optical transition

j1,z = −1/2 ↔ j3,z = −1/2, and the reverse polarization

activates optical transition j1,z = 1/2 ± j3,z=−1/2 that is not

perturbed by the pump field (Fig. 2). Thus, two circular

components of the probing wave propagate in the atomic

medium with different phase velocities, inducing a rotation

of the total linear polarization. In this case, the momentum

distribution of the atom (the carrier of information on

interference of matter waves) is mapped uniquely due to the

Doppler effect onto the frequency spectrum of the rotated

probing wave component.
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Figure 4. Spectrum of rotated polarization of the probing field

at the moment of the first maximum in Fig. 3. Asymmetry is

attributable to optical transitions in the running pump field and

serves as an indicator of interference of material waves. The

resonance detuning of the probing wave is plotted along the

horizontal axis in units of recoil frequency ωr . The thickness and

density of the atomic sample are 10 µm and 1010 cm−3 . These

values are characteristic of magneto-optical traps. The values of

the other parameters are the same as those in Fig. 3.

The mathematical apparatus for calculating the rotating

probing field component is well-developed [17] and gives

Ep,y (z , t) =
Ep(0, t)

2

[

exp(−iq+F(ωp)k pz )

− exp

(

−i
q

1p − k pvr/2 + iγ
k pz

) ]

, (10)

where inhomogeneous broadening parameter γ is in-

troduced phenomenologically, q± = πN±|d|2/3~, N± —
atomic density at sublevels j1,z = ±1/2, respectively,

k p = ωp/c , ωp — circular frequency of the probing wave,

d — reduced matrix element of the optical transition,

1p = ωp − ω0, vr = ~k/M — single-photon recoil veloc-

ity, and

F(ωp) =

∞
∑

l=−∞

|g l(t3)|2

1p − 2(l + 1/2)k pvr + iγ
,

where t3 is the moment in time when the running pump

wave is switched off.

Naturally, it would be best to optimize and simplify

the nature of output signal (10). It is for this purpose

that a traveling pump wave was introduced into the

interferometer circuit. This wave swings the momentum

distributions at the ground and excited levels of the atom

in opposite directions with a large amplitude (Fig. 3) [21],
creating a Schrödinger cat of sorts in the momentum space.

Polarization spectroscopy projects these highly asymmetric

momentum distributions onto the spectral distribution of the

rotating probing wave component. Figure 4 presents the

result in the conditions of the first extremum in Fig. 3.
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If it is necessary to have certain preliminary information

about the system, the spectrum may be measured immedi-

ately after the counter-propagating waves when the atomic

momentum distribution is symmetrical with respect to the

initial (zero) value.

Summary and conclusions

A new type of atomic interferometer based on well-

developed atomic optics and polarization spectroscopy

methods was proposed. The dynamic process stage

involves the generation of atomic equidistant momentum

states via diffraction by a resonant standing electromagnetic

wave. Further interference due to interaction with one

of the groups of traveling waves swings periodically the

momentum distributions at the ground and excited internal

energy levels in opposite directions. The measurement stage

relies on polarization spectroscopy, wherein the interference

pattern of atomic momentum states is reproduced in the

spectral distribution of the rotated component of probing

electromagnetic radiation.

The conditions under which the atomic interferometer

yields optimum and informative measurement results were

identified. The conditions established in ordinary specialized

laboratories (e.g., atomic cloud density N = 1010 cm−3 and

cloud length z = 10µm that were chosen in Fig. 4) are

more than sufficient for successful implementation of the

proposed atomic interferometer.

It should also be added that, owing to the oscillatory

nature of variation of momentum distributions, the spatial

displacements of atoms turn out to be smaller than the

wavelength of the acting optical fields: atomic trajectories

remain completely overlapping at all times. This is indicative

of compactness of the polarimetric atomic interferometer

design and of the potential appeal of its portable version.
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