Influence of tellurium and zinc stoichiometry on the ellipsometric spectra of ZnTe/GaAs (100)
Grekova A. A. 1,2, Klimov E. A.1, Vinichenko A. N. 1,2, Burlakov I. D.1
1Orion R&P Association, JSC, Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
Email: ingo.tyan2@mail.ru, klimov_evgenyi@mail.ru, idbur@ya.ru

PDF
The effect of Zn : Te molecular flux stoichiometry on the optical properties of zinc telluride was studied. The considered ZnTe structures were obtained on GaAs (100) substrates using molecular beam epitaxy. The ellipsometric spectra of the psi parameter were determined using optical ellipsometry. The study showed that the Van Hove singularities E1 and E_1+Δ1, corresponding to 3.65 eV and 4.27 eV, are characteristic of the ZnTe compound. Excess tellurium in the incident substance flux leads to a simultaneous decrease in the amplitude and broadening of the extrema in the psi(lambda) spectrum due to the formation of defects that absorb visible radiation. The spectra of the psi parameter and the imaginary component of the permittivity in the psi(λ) region have extrema that are similar in energy position. When one of the components prevails in the Zn:Te ratio, the energy positions of the critical points remain constant at different sample thicknesses. However, excess Zn in the Zn:Te ratio leads to uncertainty in the energy position of the absorption edge. The results of the study will be useful for ellipsometric express control of stoichiometry and assessment of the crystalline quality of binary solid solutions of the A2B6 group in the composition of epitaxial layers Keywords: zinc telluride, spectral ellipsometry, molecular beam epitaxy, composition stoichiometry, ellipsometric spectra.
  1. F. Hou, Y. Zhang, Y. Zhou, M. Zhang, B. Lv. Sustainability, 14 (18), 11161 (2022). DOI: 10.3390/su141811161
  2. T. Kawanishi. Photonics, 8 (5), 160 (2021). DOI: 10.3390/photonics8050160
  3. D. Wang, M.L. Kuzma, X. Tan, T.C. He, C. Dong, Z. Liu. J. Adv. Drug Delivery Rev., 179, 114036 (2021). DOI: 10.1016/j.addr.2021.114036
  4. S. Durganjali, S. Bethanabhotla, S. Kasina, S. Radhika. J. Physics: Conf. Ser., 1495, 012018 (2020). DOI: 10.1088/1742-6596/1495/1/012018
  5. H.L. Liu, C.C. Chen, C.C. Yeh, C.H. Chen, M.Y. Yu, S. Keller, S.P. DenBaars. Chem. Phys. Lett., 345 (3-4), 245-251 (2021). DOI: 10.1016/S0009-2614(01)00858-2
  6. V.S. Varavin, S.A. Dvoretskii, N.N. Mikhailov, V.G. Remesnik, I.V. Sabinina, Yu.G. Sidorov, V.A. Shvets, M.V. Yakushev, A.V. Latyshev. Optoelectron. Instrument. Data Process., 56, 456-469 (2020). DOI: 10.3103/S8756699020050143
  7. H. Singh, T. Singh, J. Sharma. ISSS J. Micro Smart Syst., 7, 123-143 (2018). DOI: 10.1007/s41683-018-0026-2
  8. R.D. Feldman, R.F. Austin, A.H. Dayem, E.H. Westerwick. Appl. Phys. Lett., 49, 797, 1986. DOI: 10.1063/1.97550
  9. R.D. Feldman, R.F. Austin, P.M. Bridenbaugh, A.M. Johnson, W.M. Simpson, B.A. Wilson, C.E. Bonner. J. Appl. Phys., 64, 1191 (1988). DOI: 10.1063/1.341883
  10. T. Moss, G. Barrell, B. Ellis. Semiconductor Optoelectronics (Mir, M., 1976), p. 56
  11. K.V. Shalimova. Fizika poluprovodnikov (Energoatomizdat, M., 1985), ed. 3, p. 302 (in Russian)
  12. V.A. Shvets, M.V. Yakushev. Opt. Spectrosc., 92 (5), 780-783 (2002). DOI: 10.1134/1.1481146
  13. F. Ahmed, A.E. Naciri, J.J. Grob, M. Stchakovsky, L. Johann. Nanotechnology, 20, 305702 (2009). DOI: 10.1088/0957-4484/20/30/305702
  14. E.D. Palik. Handbook of optical constants of solids (Academic Press, USA, 1998), V. 1-3, P. 798
  15. V. Gupta, A. Mansingh. J. Appl. Phys., 80, 1063-1073 (1996). DOI: 10.1063/1.362842
  16. V.A. Shvets, D.V. Marin, V.G. Remesnik, I.A. Azarov, M.V. Yakushev, S.V. Rykhlitsky. Opt. i spektr., 128 (12), 1815-1820 (2020) (in Russian). DOI: 10.21883/OS.2020.12.50315.349-20
  17. D.V. Marin, V.A. Shvets, I.A. Azarov, M.V. Yakushev, S.V. Rykhlitskii. Infrared Phys. Technol., 116, 103793 (2021). DOI: 10.1016/j.infrared.2021.103793
  18. V.A. Shvets, D.V. Marin, M.V. Yakushev, S.V. Rykhlitsky. FTP, 57 (6), 469-475 (2023) (in Russian). DOI: 10.61011/FTP.2023.06.56476.5278
  19. V.A. Shvets, I.A. Azarov, D.V. Marin, M.V. Yakushev, S.V. Rykhlitsky. FTP, 53 (1), 137-142 (2019) (in Russian). DOI: 10.21883/FTP.2019.01.47001.8947
  20. F.T.J. Smith. J. Phys. Chem. Sol., 32 (9), 2201-2209 (1971). DOI: 10.1016/S0022-3697(71)80398-0
  21. I. Horichok, T. Parashchuk, M. Pylyponiuk, O. Soroka, M. Voloshynovych. J. Crystal Growth, 486, 10-18 (2018). DOI: 10.1016/j.jcrysgro.2017.12.039
  22. K. Sato, S. Adachi. J. Appl. Phys., 73, 926-931 (1993). DOI: 10.1063/1.353305
  23. G. Cohensolar, F. Bailly, M. Barbe. Appl. Phys. Lett., 49, 1519 (1986). DOI: 10.1063/1.97320

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru