Physics of the Solid State
Volumes and Issues
Van der Waals encapsulation of carbon nanotubes
Savin A. V.1,2, Savina O. I.2
1N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
2Plekhanov Russian University of Economic, Moscow, Russia
Email: asavin@chph.ras.ru, Savina.OI@rea.ru

PDF
Encapsulated carbon nanotubes lying on a flat substrate have been modeled. It is shown that encapsulation of nanotubes (coating with a sheet of graphene or hexagonal boron nitride) promotes their collapse. Coating the nanotube with the sheet leads to the appearance of effective (internal) pressure on its surface, which in some areas can reach maximum values of 8 GPa. The average value of the internal pressure monotonically decreases with increasing nanotube diameter (doubling of the diameter leads to more than twofold decrease of the pressure). It is shown that inside the encapsulated nanotube cluster the pressure is uniformly distributed. For a nanotube cluster with a chirality index (5,0), the internal pressure can reach 2 GPa. Encapsulation can increase the interaction energy of nanotubes more than ten times. Combining two encapsulations allows an energy gain of 1.22 eV, but bringing them closer together requires overcoming an energy barrier of 0.14 eV (encapsulations attract at short distances and repel at long distances). Covering the nanotube cluster with a sheet of graphene significantly increases its stability. The molecular dynamics method shows that the encapsulated cluster retains its crystalline structure at T<500 K, and at higher temperatures its melting occurs, accompanied by a significant increase in the volume of the interlayer cavity (pocket) in which it is located. The cavity takes the form of a semicircle, and its volume increases monotonically with increasing temperature. Keywords: carbon nanotubes, graphene, van der Waals encapsulation.
  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science 306, 5696, 666 (2004)
  2. A.K. Geim, K.S. Novoselov. Nat. Mater. 6, 3, 183 (2007)
  3. C. Soldano, A. Mahmood, E. Dujardin. Carbon 48, 8, 2127 (2010)
  4. J.A. Baimova, B. Liu, S.V. Dmitriev, K. Zhou. Phys. Status Solidi RRL 8, 4, 336 (2014)
  5. J.A. Baimova, E.A. Korznikova, S.V. Dmitriev, B. Liu, K. Zhou. Rev. Adv. Mater. Sci. 39, 69 (2014)
  6. A.K. Geim. Science 324, 5934, 1530 (2009)
  7. C. Lee, X. Wei, J.W. Kysar, J. Hone. Science 321, 5887, 385 (2008)
  8. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Nano Lett. 8, 3, 902 (2008)
  9. Y. Liu, C. Hu, J. Huang, B.G. Sumpter, R. Qiao. J. Chem. Phys. 142, 24, 244703 (2015)
  10. A.K. Geim, I.V. Grigorieva. Nature 499, 419 (2013)
  11. L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, C.R. Dean. Science 342, 614 (2013)
  12. R. Xiang, T. Inoue, Y. Zheng, A. Kumamoto, Y. Qian, Y. Sato, M. Liu, D. Tang, D. Gokhale, J. Guo, K. Hisama, S. Yotsumoto, T. Ogamoto, H. Arai, Y. Kobayashi, H. Zhang, B. Hou, A. Anisimov, M. Maruyama, Y. Miyata, S. Okada, S. Chiashi, Y. Li, J. Kong, E.I. Kauppinen, Y. Ikuhara, K. Suenaga, S. Maruyama. Science 367, 537 (2020)
  13. Y. Zhang, C. Hu, B. Lyu, H. Li, Z. Ying, L. Wang, A. Deng, X. Luo, Q. Gao, J. Chen, J. Du, P. Shen, K. Watanabe, T. Taniguchi, J.-H. Kang, F. Wang, Y. Zhang, Z. Shi. Nano Lett. 20, 2770 (2020)
  14. K.S. Vasu, E. Prestat, J. Abraham, J. Dix, R.J. Kashtiban, J. Beheshtian, J. Sloan, P. Carbone, M. Neek-Amal, S.J. Haigh, A.K. Geim, R.R. Nair. 7, 12168 (2016)
  15. E. Khestanova, F. Guinea, L. Fumagalli, A.K. Geim, I.V. Grigorieva. Nat. Commun. 7, 12587 (2016)
  16. C. Hu, J. Chen, X. Zhou, Y. Xie, X. Huang, Z. Wu, S. Ma, Z. Zhang, K. Xu, N. Wan, Y. Zhang, Q. Liang, Z. Shi. Nat. Commun. 15, 3486 (2024)
  17. L. Zhang, Y. Wang, J. Lv, Y. Ma. Nat. Rev. Mater. 2, 17005 (2017)
  18. J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, J. Yang. Int. J. Hydrogen Energy 37, 1, 1048 (2012)
  19. N.G. Apkadirova, K.A. Krylova, J.A. Baimova. Letters on Materials (Pisma o materialakh) 12, 4, 445 (2022). (in Russian)
  20. A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B 92, 035412 (2015)
  21. A.V. Savin, E.A. Korznikova, S.V. Dmitriev. FTT 57 11, 2278 (2015)
  22. A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B 99, 235411 (2019)
  23. A.V. Savin. ZhETF 160, 6, 885 (2021) (in Russian)
  24. A.V. Savin, O.I. Savina. FTT 61, 11, 2257 (2019). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru