Physics of the Solid State
Volumes and Issues
Free volume in the classical model of viscous flow during glass transition
Razumovskaya I.V. 1, Mashanov A.A. 2, Filippova Y.A. 1,3, Naumov A.V. 1,4
1Moscow Pedagogical State University, Moscow, Russia
2Buryat State University, Ulan-Ude, Russia
3Moscow State University, Moscow, Russia
4Lebedev Physical Institute of the Russian Academy of Sciences, LPI Troitsk science park, Troitsk, Russia
Email: irinarasum9@mail.ru, yufi26@list.ru, a_v_naumov@mail.ru

PDF
A modification of the Eyring model is discussed, which takes into account free volume during viscous flow. It is proposed to include free volume directly in the structural model. In this model, repeated vacancies in the material are analogous to sets of edge dislocations on a single sliding plane. The displacement is a cooperative process involving successive "jumps" of groups of atoms (in the one-dimensional case, chains). An inverse proportionality between the Newtonian viscosity coefficient and vacancy concentration is determined. As temperature decreases, vacancy concentration decreases and kinetic unit size (or "structural") increases. This can lead to increased potential barrier and further slowing of glass transition.. Within the framework of the improved model, it has been shown that the frequency of asymmetric local oscillations at vacant positions should be considered as fluctuations of kinetic entities that determine viscosity and the glass transition process. Keywords: viscosity, vacancy, local vibrations, relaxation, glass.
  1. P.W. Anderson. Science 267, 5204, 1615 (1995)
  2. V.L. Ginzburg. Phys. --- Uspekhi 42, 4, 353 (1999)
  3. V. Lubchenko, P.G. Wolynes. Annu. Rev. Phys. Chem. 58, 1, 235 (2007)
  4. V. Lubchenko. Adv. Phys. 64, 3, 283 (2015)
  5. V.N. Novikov, E. Rossler, V.K. Malinovsky, N.V. Surovtsev. Europhys. Lett. 35, 4, 289 (1996)
  6. M.V. Wolkenstein, O.B. Ptitsyn. DAN SSSR 103, 5, 795 (1955) (in Russian)
  7. G.M. Bartenev. DAN SSSR 76, 2, 227 (1951) (in Russian)
  8. S.V. Nemilov. Thermodynamic and Kinetic Aspects of the Vitreous State. Boca Raton-Ann Arbor-London-Tokyo, CRC Press (1995). 222 p
  9. D. Gomez, A. Alegri a, A. Arbe. J. Colmenero. Macromolecules 34, 3, 503 (2001)
  10. J.C. Qiao, Y.H. Chen, R. Casalini, J.M. Pelletier, Y. Yao. J. Mater. Sci. \& Technol. 35, 6, 982 (2019)
  11. B. Wang, Z.Y. Zhou, P.F. Guan, H.B. Yu, W.H. Wang, K.L. Ngai. Phys. Rev. 102, 9, 094205 (2020)
  12. E. Duval, A. Mermet, N.V. Surovtsev, A.J. Dianoux. J. Non-Crystalline Solids 235--237, 203 (1998)
  13. V.A. Ryzhov, V.A. Bershtein. Phys. Solid State 50, 10, 1985 (2008)
  14. Yu.G. Vainer, A.V. Naumov, M. Bauer, L. Kador. Phys. Rev. Lett. 97, 18, 185501 (2006)
  15. I.O. Raikov, D.A. Conyuh, A.N. Ipatov, D.A. Parshin. Phys. Solid State 62, 11, 2143 (2020)
  16. M.A. Ramos. Low Temperature Phys. 46, 2, 104 (2020)
  17. S.V. Adischev, I.V. Zaytseva, V.A. Zykova, V.K. Malinovsky, V.N. Novikov. Avtometriya 59, 3, 3 (2023). (in Russian)
  18. D.A. Conyuh, Y.M. Beltukov. Phys. Solid State 62, 4, 689 (2020)
  19. V.A. Ryzhov. Phys. Solid State 62, 5, 926 (2020)
  20. A.O. Savostianov, I.Yu. Eremchev, A.V. Naumov. Photonics Russia 17, 7, 508 (2023)
  21. A.O. Savostianov, I.Yu. Eremchev, T. Plakhotnik, A.V. Naumov. Phys. Rev. B 110, 4, 045430 (2024)
  22. A.O. Savostianov, A.V. Naumov. JETP Lett. 120, 5, 322 (2024)
  23. R.H. Khasanshin, D.A. Primenko. Bull. Russ. Acad. Sci.: Phys. 86, 5, 526 (2022)
  24. K. Suzuki, H. Fujimori, K. Hashimoto. Materials Science of Amorphous Metals. Ohm-sha, Tokyo (1982)
  25. A.I. Gusev. Nanomaterialy, nanostruktury, nanotekhnologii. Fizmatlit, M. (2005). 416 s. (in Russian)
  26. A.J. Batshinski. Z. Physik. Chemie 84, 6, 643 (1913)
  27. H. Eyring. J. Chem. Phys. 4, 4, 283 (1936)
  28. S. Glasstone, K.J. Laidler, H. Eyring. The Theory of Rate Processes. McGraw-Hill Book Co., Inc., New York (1941)
  29. R.E. Powell, H. Eyring. In: Advances in Colloid Science, v. 1 / Ed. E.O. Kraemer. NY / Interscience Pub. (1942). P. 183
  30. Ya.I. Frenkel. Kineticheskaya teoriya zhidkostey. Izd. AN SSSR, M.-.L. (1945). 592 s. (in Russian)
  31. A.A. Miller. J. Polym Sci. A-2 Polym. Phys. 4, 3, 415 (1966)
  32. G.M. Bartenev. Stroenie i mekhanicheskie svoystva neorganicheskikh stekol. Stroyizdat, M. (1966). 216 s. (in Russian)
  33. Yu.S. Lipatov. Russ. Chem. Rev. 47, 2, 186 (1978)
  34. A.A. Askadskiy, V.I. Kondraschenko. Kompyuternoe materialovedeniye polimerov. Atomno-molekulyarny uroven. Nauchny mir, M. (1999). 543 s. (in Russian)
  35. A.K. Doolittle. J. Appl. Phys. 22, 12, 1471 (1951)
  36. M.H. Cohen, G.S. Grest. Phys. Rev. B 20, 3, 1077 (1979)
  37. L. Berthier, G. Biroli. Rev. Mod. Phys. 83, 2, 587 (2011)
  38. T.V. Tropin, Ju.W.P. Schmelzer, V.L. Aksenov. Phys. --- Uspekhi 59, 1, 42 (2016)
  39. S.V. Nemilov. Fiz. i khim. stekla 3, 315 (2010). (in Russian)
  40. S.V. Nemilov. J. Non-Cryst. Solids 352, 26--27, 2715 (2006)
  41. A.I. Slutsker, A.I. Mihailin, I.A. Slutsker. Phys. --- Uspekhi 37, 4, 335 (1994)
  42. I.V. Razumovskaya, G.M. Bartenev. Strukturnoe steklovanie kak "vymerzanie" kharakternykh akusticheskikh chastot. V kn. Stekloobraznoe sostoyanie. Trudy V Vsesoyuz. sovesch. po stekloobraznomu sostoyaniyu. Nauka, L. 34 (1971). (in Russian)
  43. D.S. Sanditov. JETP 115, 1, 105 (2012)
  44. D.S. Sanditov, M.I. Ojovan. Phys. --- Uspekhi 62, 2, 111 (2019)
  45. D.S. Sanditov, A.A. Mashanov. Tech. Phys. 87, 11, 1660 (2017)
  46. A.I. Slutsker, V.I. Vettegren, V.B. Kulik, V.L. Gilyarov, Yu.I. Polikarpov, D.D. Karov. Phys. Solid State 58, 4, 824 (2016)
  47. G. Adam, J.H. Gibbs. J. Chem. Phys. 43, 1, 139 (1965)
  48. I.M. Lifshits. J. Phys. USSR 7, 211 (1943)
  49. O. Madelung. Introduction to Solid-State Theory. Springer-Verlag (1978)
  50. A.A. Maradudin, E.W. Montroll, J. Weiss. Theory of Lattice Dynamics in the Harmonic Approximation. Academic Press, New York (1963)
  51. E.W. Montroll, R.B. Potts. Phys. Rev. 102, 1, 72 (1956)
  52. E.W. Montroll, R.B. Potts. Phys. Rev. 100, 2, 525 (1955)
  53. A.A. Maradudin. Solid State Phys. 18, 273 (1966) \& 19, 1 (1967)
  54. M.A. Mamalui, E.S. Syrkin, S.B. Feodos'ev. Phys. Solid State 38, 12, 2006 (1996)
  55. E.S. Syrkin, S.B. Feodos'ev. Low Temperature Phys. 20, 6, 463 (1994)
  56. M.A. Mamalui, E.S. Syrkin, S.B. Feodos'ev. Low Temperature Phys. 24, 8, 583 (1998)
  57. M.A. Mamalui, E.S. Syrkin, S.B. Feodos'ev. Low Temperature Phys. 25, 1, 55 (1999)
  58. A.K. Murtazaev, M.K. Ramazanov, M.K. Badiev. Bull. Russ. Acad. Sci.: Phys. 75, 8, 1042 (2011)
  59. A.K. Murtazaev, M.K. Ramazanov, M.K. Badiev. Bull. Russ. Acad. Sci.: Phys. 77, 10, 1248 (2013)
  60. A.K. Murtazaev, M.K. Ramazanov, F.A. Kassan-Ogly, M.K. Badiev. JETP 117, 6, 1091 (2013)
  61. K.Sh. Murtazaev, A.K. Murtazaev, M.K. Ramazanov, M.A. Magomedov. Bull. Russ. Acad. Sci.: Phys. 86, 2, 130 (2022).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru