Investigation of structural and hysteresis properties of oxidized permalloy films
Blinov I.V.
1, Korkh Y.V.
1, Kuznetstova T.V.
1, Devyaterikov D.I.
1, Maksimova I.K.
1, Falahutdinov R.M.
1, Istomina A.Y.
11M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: blinoviv@mail.ru, istomina@imp.uran.ru
The paper presents the results of the study of structural and hysteresis properties of permalloy films. The kinetics of oxide formation on the film surface under different oxidation conditions has been studied. New experimental data on the structure and magnetic properties of the synthesized compounds have been obtained. In permalloy films oxidized in air, it was found that as the temperature of thermomagnetic treatment increases, NiFe2O4 oxides and amorphous iron oxyhydroxide groups are mainly formed in the samples. As the annealing temperature is further increased, the oxides formed on the surface of permalloy films are iron oxides (predominantly α-Fe2O3). The regularities of hysteresis properties change at varying annealing temperature have been determined. The conditions of formation of the exchange shift of the hysteresis loop in oxidized permalloy films have been established. Keywords: permalloy, unidirectional anisotropy, oxides, thermomagnetic treatment.
- C. Zheng, K. Zhu, S.C. De Freitas. IEEE Transactions on Magnetics., 55, 1 (2010). DOI: 10.1109/TMAG.2019.2896036
- L. Jogschies, D. Klaas, R. Kruppe. Sensors, 15, 11, 28665 (2015). (in Russian). DOI: 10.3390/s151128665
- T. Blachowicz, A. Ehrmann. Coatings, 11, 1 (2021). DOI: 10.3390/coatings11020122
- F. Radu, H. Zabel. Exchange bias effect of ferro-/antiferromagnetic heterostructures, Magnetic Heterostructures, Berlin: Springer-Verlag, 3, 97 (2008)
- R. Coehoorn. Novel Magnetoelectronic Materials and Devices: Handbook of Magnetic Materials. Amsterdam: Elsevier, 1 (2003)
- D.I. Anyfantis, C. Ballani, N. Kanistras, A. Barnasas, V. Kapaklis, G. Schmidt, E.T. Papaioannou, P. Poulopoulos. Coatings, 12, 627 (2022). DOI: 10.3390/coatings12050627
- W. Bruckner, S. Baunack, M. Hecker, J. Thomas, S. Groudeva-Zotova, C.M. Schneider. Materials Science and Engineering B, 86, 3, 272 (2001). DOI: 10.1016/S0921-5107(01)00696-1
- Z. He, Z. Li, X. Jiang, C. Wu, Y. Liu, X. Song, Z. Yu, Y. Wang, Z. Lan, K. Sun. Metals, 11, 2061 (2021). DOI: 10.3390/met11122061
- M. Kitada. J. Mater Sci, 26, 4150 (1991). DOI: 10.1007/BF02402960
- V.A. Vas'ko, M.T. Kief. J. Appl. Phys., 97, 10J116 (2005). DOI: 10.1063/1.1854279
- V.O. Vas'kovskiy, O.A. Adanakova, A.N. Gorkovenko. Phys. Metals Metallogr., 116, 1175 (2015). DOI: 10.1134/S0031918X15120133
- B.D. Cullity. Elements of X-Ray Diffraction. Addison-314 Wesley, Inc., London. (1978)
- Ahmad Al-Qawasmeh, Mohammad H.A. Badarneh, Abdalla Obeidat, Sufian Abedrabbo. J. Magn. Magn. Mater., 562, 169734 (2022). DOI: 10.1016/j.jmmm.2022.169734
- S. Ingvarsson, Gang Xiao, S.S.P. Parkin, W.J. Gallagher. J. Magn. Magn. Mater., 251, 2, 202 (2002). DOI: 10.1016/S0304-8853(02)00577-2
- Jiajun Guo, Xiaonan Zhao, Zhijian Lu, Peng Shi, Yufeng Tian, Yanxue Chen, Shishen Yan, Lihui Bai. Phys. Rev. B., 104, L100401 (2021). DOI: 10.1103/PhysRevB.104.L100401
- M.N. Iliev, D. Mazumdar, J. X. Ma, A. Gupta, F. Rigato, J. Fontcuberta. Physical Review B --- Condensed Matter and Materials Physics, 83, 1, 014108. (2011). DOI: 10.1103/PhysRevB.83.014108
- A. Ahlawat, V.G. Sathe. Iournal of Raman Spectroscopy, 42, 5, 1087 (2011). DOI: 10.1002/jrs.2791
- G. Dagan, W. Shen, M. Tomkiewicz. Journal of the Electrochemical Society, 139, 7, 1855 (1992). DOI: 10.1149/1.2069511
- S. Cercelaru, A.-M. Nguyen, P. Hesto, G. Tremblay, J.-C. Perron Sever Cercelaru. J. Magn. Magn. Mater., 160, 338 (1996). DOI: 10.1016/0304-8853(96)00220-X
- K. Masahiro, Y. Kazuhiro, J. Magn. Magn. Mater., 147, 1-2, 213 (1995). DOI: 10.1016/0304-8853(95)00022-4
- M. Sousa, H. Tourinho, J.C. Rubim. Journal of Raman Spectroscopy, 31, 3, 185 (2000). DOI: 10.1002/(SICI)1097-4555(200003)31:3<185::AID-JRS511>3.0.CO;2-B
- O. Diaz-Morales, D. Ferrus-Suspedra, M.T. Koper. Chemical Science, 7, 4, 2639 (2016). DOI: 10.1039/C5SC04486C
- F. Tang, T. Liu, W. Jiang, L. Gan. Journal of Electroanalytical Chemistry, 871, 114282 (2020). DOI: 10.1016/j.jelechem.2020.114282
- A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta. J. Magn. Magn. Mater., 323, 15, 2049 (2011). DOI: 10.1016/j.jmmm.2011.03.017
- B. Tsedenbal, I. Hussain, M.S. Anwar, B.H. Koo. Journal of nanoscience and nanotechnology, 18, 9, 6127 (2018). DOI: /10.1166/jnn.2018.15614
- Q. Zhang, X. Lu, L. Chen, Y. Shi, T. Xu, M. Liu. Materials Letters, 106, 447 (2013). DOI: 10.1016/j.matlet.2013.08.029
- J. F. Mir, S. Rubab, M.A. Shah. Chemical Physics Letters, 741, 137088. (2020). DOI: 10.1016/j.cplett.2020.137088
- R. Yang, X. Liu, H. Du, N. Sun, H. Lin, S. Li. AIP Advances, 7, 5, 056301 (2016). DOI: 10.1063/1.4972799
- A. Sikora, M. Ozimek, W. Wilczynski. Acta Physica Polonica A, 129, 6, 1226 (2016). DOI: 10.12693/APhysPolA.129.1226
- N. Coton, J.P. Andres, M. Jaafar, A. Begue, R. Ranchal. Journal of Applied Physics, 135, 9, 093905 (2024). DOI: 10.1063/5.0193531
- N. Coton, J.P. Andres, M. Jaafar, A. Begue, R. Ranchal. J. Magn. Magn. Mater., 565, 170246 (2023). DOI: 10.1016/j.jmmm.2022.170246
- K. O'Grady, L.E. Fernandez, G. Vallejo-Fernandez. J. Magn. Magn. Mater., 322, 883 (2010). DOI: 10.1016/j.jmmm.2009.12.011
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.