Physics of the Solid State
Volumes and Issues
Investigation of structural and hysteresis properties of oxidized permalloy films
Blinov I.V. 1, Korkh Y.V. 1, Kuznetstova T.V. 1, Devyaterikov D.I. 1, Maksimova I.K. 1, Falahutdinov R.M. 1, Istomina A.Y. 1
1M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: blinoviv@mail.ru, istomina@imp.uran.ru

PDF
The paper presents the results of the study of structural and hysteresis properties of permalloy films. The kinetics of oxide formation on the film surface under different oxidation conditions has been studied. New experimental data on the structure and magnetic properties of the synthesized compounds have been obtained. In permalloy films oxidized in air, it was found that as the temperature of thermomagnetic treatment increases, NiFe2O4 oxides and amorphous iron oxyhydroxide groups are mainly formed in the samples. As the annealing temperature is further increased, the oxides formed on the surface of permalloy films are iron oxides (predominantly α-Fe2O3). The regularities of hysteresis properties change at varying annealing temperature have been determined. The conditions of formation of the exchange shift of the hysteresis loop in oxidized permalloy films have been established. Keywords: permalloy, unidirectional anisotropy, oxides, thermomagnetic treatment.
  1. C. Zheng, K. Zhu, S.C. De Freitas. IEEE Transactions on Magnetics., 55, 1 (2010). DOI: 10.1109/TMAG.2019.2896036
  2. L. Jogschies, D. Klaas, R. Kruppe. Sensors, 15, 11, 28665 (2015). (in Russian). DOI: 10.3390/s151128665
  3. T. Blachowicz, A. Ehrmann. Coatings, 11, 1 (2021). DOI: 10.3390/coatings11020122
  4. F. Radu, H. Zabel. Exchange bias effect of ferro-/antiferromagnetic heterostructures, Magnetic Heterostructures, Berlin: Springer-Verlag, 3, 97 (2008)
  5. R. Coehoorn. Novel Magnetoelectronic Materials and Devices: Handbook of Magnetic Materials. Amsterdam: Elsevier, 1 (2003)
  6. D.I. Anyfantis, C. Ballani, N. Kanistras, A. Barnasas, V. Kapaklis, G. Schmidt, E.T. Papaioannou, P. Poulopoulos. Coatings, 12, 627 (2022). DOI: 10.3390/coatings12050627
  7. W. Bruckner, S. Baunack, M. Hecker, J. Thomas, S. Groudeva-Zotova, C.M. Schneider. Materials Science and Engineering B, 86, 3, 272 (2001). DOI: 10.1016/S0921-5107(01)00696-1
  8. Z. He, Z. Li, X. Jiang, C. Wu, Y. Liu, X. Song, Z. Yu, Y. Wang, Z. Lan, K. Sun. Metals, 11, 2061 (2021). DOI: 10.3390/met11122061
  9. M. Kitada. J. Mater Sci, 26, 4150 (1991). DOI: 10.1007/BF02402960
  10. V.A. Vas'ko, M.T. Kief. J. Appl. Phys., 97, 10J116 (2005). DOI: 10.1063/1.1854279
  11. V.O. Vas'kovskiy, O.A. Adanakova, A.N. Gorkovenko. Phys. Metals Metallogr., 116, 1175 (2015). DOI: 10.1134/S0031918X15120133
  12. B.D. Cullity. Elements of X-Ray Diffraction. Addison-314 Wesley, Inc., London. (1978)
  13. Ahmad Al-Qawasmeh, Mohammad H.A. Badarneh, Abdalla Obeidat, Sufian Abedrabbo. J. Magn. Magn. Mater., 562, 169734 (2022). DOI: 10.1016/j.jmmm.2022.169734
  14. S. Ingvarsson, Gang Xiao, S.S.P. Parkin, W.J. Gallagher. J. Magn. Magn. Mater., 251, 2, 202 (2002). DOI: 10.1016/S0304-8853(02)00577-2
  15. Jiajun Guo, Xiaonan Zhao, Zhijian Lu, Peng Shi, Yufeng Tian, Yanxue Chen, Shishen Yan, Lihui Bai. Phys. Rev. B., 104, L100401 (2021). DOI: 10.1103/PhysRevB.104.L100401
  16. M.N. Iliev, D. Mazumdar, J. X. Ma, A. Gupta, F. Rigato, J. Fontcuberta. Physical Review B --- Condensed Matter and Materials Physics, 83, 1, 014108. (2011). DOI: 10.1103/PhysRevB.83.014108
  17. A. Ahlawat, V.G. Sathe. Iournal of Raman Spectroscopy, 42, 5, 1087 (2011). DOI: 10.1002/jrs.2791
  18. G. Dagan, W. Shen, M. Tomkiewicz. Journal of the Electrochemical Society, 139, 7, 1855 (1992). DOI: 10.1149/1.2069511
  19. S. Cercelaru, A.-M. Nguyen, P. Hesto, G. Tremblay, J.-C. Perron Sever Cercelaru. J. Magn. Magn. Mater., 160, 338 (1996). DOI: 10.1016/0304-8853(96)00220-X
  20. K. Masahiro, Y. Kazuhiro, J. Magn. Magn. Mater., 147, 1-2, 213 (1995). DOI: 10.1016/0304-8853(95)00022-4
  21. M. Sousa, H. Tourinho, J.C. Rubim. Journal of Raman Spectroscopy, 31, 3, 185 (2000). DOI: 10.1002/(SICI)1097-4555(200003)31:3<185::AID-JRS511>3.0.CO;2-B
  22. O. Diaz-Morales, D. Ferrus-Suspedra, M.T. Koper. Chemical Science, 7, 4, 2639 (2016). DOI: 10.1039/C5SC04486C
  23. F. Tang, T. Liu, W. Jiang, L. Gan. Journal of Electroanalytical Chemistry, 871, 114282 (2020). DOI: 10.1016/j.jelechem.2020.114282
  24. A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta. J. Magn. Magn. Mater., 323, 15, 2049 (2011). DOI: 10.1016/j.jmmm.2011.03.017
  25. B. Tsedenbal, I. Hussain, M.S. Anwar, B.H. Koo. Journal of nanoscience and nanotechnology, 18, 9, 6127 (2018). DOI: /10.1166/jnn.2018.15614
  26. Q. Zhang, X. Lu, L. Chen, Y. Shi, T. Xu, M. Liu. Materials Letters, 106, 447 (2013). DOI: 10.1016/j.matlet.2013.08.029
  27. J. F. Mir, S. Rubab, M.A. Shah. Chemical Physics Letters, 741, 137088. (2020). DOI: 10.1016/j.cplett.2020.137088
  28. R. Yang, X. Liu, H. Du, N. Sun, H. Lin, S. Li. AIP Advances, 7, 5, 056301 (2016). DOI: 10.1063/1.4972799
  29. A. Sikora, M. Ozimek, W. Wilczynski. Acta Physica Polonica A, 129, 6, 1226 (2016). DOI: 10.12693/APhysPolA.129.1226
  30. N. Coton, J.P. Andres, M. Jaafar, A. Begue, R. Ranchal. Journal of Applied Physics, 135, 9, 093905 (2024). DOI: 10.1063/5.0193531
  31. N. Coton, J.P. Andres, M. Jaafar, A. Begue, R. Ranchal. J. Magn. Magn. Mater., 565, 170246 (2023). DOI: 10.1016/j.jmmm.2022.170246
  32. K. O'Grady, L.E. Fernandez, G. Vallejo-Fernandez. J. Magn. Magn. Mater., 322, 883 (2010). DOI: 10.1016/j.jmmm.2009.12.011

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru