Construction of the interatomic potential of the ferroelectric barium titanate based on the temperature dependence of the heat capacity near the phase transition
Kuzenko D. V.
11Research Institute "Reactivelectron", Donetsk, Russia
Email: danil.kuzenko.84@yandex.ru
The article presents the results of studying the temperature dependence of the heat capacity of the ferroelectric BaTiO3 in the vicinity of the phase transition in order to construct the interatomic potential. An effective interatomic potential is introduced to take into account the type of chemical bond (covalent for Ti-O or ionic for Ba-O bond). To assess the correctness of the choice of the effective potential, it is proposed to calculate the enthalpy of the phase transition taking into account the presence of several activation processes in the vicinity of the phase transition. The presence of two activation processes when approaching the Curie temperature in the ferroelectric phase with activation energies U is established. The first is due to the motion of oxygen vacancies (U1=0.99 eV). The second begins at the critical temperature Tcrit. (5 K below the Curie temperature TC) and is associated with the electron-phonon interaction in the presence of electron orbital degeneracy and mixing of the electron bands of the 2p-states of O with the d-states of Ti (U2=2.46 eV). The activation process in the paraelectric phase (U3=2.87 eV) is associated with the relaxation of the structure after a change in the symmetry of the crystal lattice. The results obtained are discussed within the framework of the vibronic theory of ferroelectricity, taking into account the Jahn-Teller effect (or pseudo-effect). Keywords: heat capacity, barium titanate, interatomic potential, entropy, phase transition, ferroelectric, activation energy.
- G.A. Smolensky, V.A. Bokov, V.A. Isupov, N.N. Kraynik, R.E. Pasynkov, M.S. Shur. Segnetoelektriki i antisegnetoelektriki. Nauka, L. (1971). 476 s. (in Russian)
- V.G. Vaks. Vvedenie v mikroskopicheskuyu teoriyu segnetoelektrikov. Nauka, M. (1973). 328 s. (in Russian)
- I. Hatta, A. Ikushima. J. Phys. Soc. Jpn. 41, 2, 558 (1976)
- J. You, G. Li, S. Zhang, X. Zhang, J. Luo, M. Rao, Z. Peng. J. Alloys Compd. 882, 160641 (2021)
- H.-Y. Zhang, Z.-Y. Zeng, Y.-Q. Zhao, Q. Lu, Y. Cheng. Z. Naturforsch. A 71, 8, 759 (2016)
- A. Belboukhari, S.A. Saghir, A. Bakak, S. El-Jallal, K.A. Bentaleb, M.A. Koumina, D. Mezzane, Y. Gagou. J. Adv. Dielectr. 15, 2, 2450020 (2025)
- M. Ivliev, K. Andryushin. J. Adv. Dielectr. 15, 2, 2450019 (2025)
- T.A. Colson, M.J.S. Spencer, I. Yarovsky. Comput. Mater. Sci. 34, 2, 157 (2005)
- C.L. Freeman, J.A. Dawson, H.-R. Chen, J.H. Harding, L.-B. Ben, D.C. Sinclair. J. Mater. Chem. 21, 13, 4861 (2011)
- Q. You, S. Gu, X. Gou. Materials 16, 2043 (2023)
- S. Piskunov, E.A. Kotomin, E. Heifets, J. Maier, R.I. Eglitis, G. Borstel. Surf. Sci. 575, 1-2, 75 (2005)
- V.P. Zhukov, E.V. Chulkov. FTT 64, 12, 1891 (2022). (in Russian)
- R.E. Cohen. Nature 358, 6382, 136 (1992)
- N. Choudhury, E.J. Walter, A.I. Kolesnikov, C.-K. Loong. Phys. Rev. B 77, 134111 (2008)
- S. Saha, T.P. Sinha, A. Mookerjee. Phys. Rev. B 62, 13, 8828 (2000)
- P. Ghosez, E. Cockayne, U.V. Waghmare, K.M. Rabe. Phys. Rev. B 60, 2, 836 (1999)
- I.M. Lifshits. ZhETF 26, 5, 551 (1954). (in Russian)
- V.I. Iveronova, A.N. Tikhonov, P.N. Zaikin, A.P. Zvyagina. FTT 8, 12, 3459 (1966). (in Russian)
- E.A. Mikhalyova, I.N. Flyorov, M.V. Gorev, M.S. Molokeev, A.V. Cherepakhin, A.V. Kartashev, N.V. Mikhashenok, K.A. Sablina. FTT 54, 9, 1719 (2012)
- S.N. Kallaev, Z.M. Omarov, A.G. Bakmaev, K. Abdulvakhidov. FTT 55, 5, 1011 (2013). (in Russian)
- R.G. Mitarov, S.N. Kallaev, Z.M. Omarov, K.G. Abdulvakhidov. FTT 65, 2, 361 (2023). (in Russian)
- W.L. Warren, K. Vanheusden, D. Dimos, G.E. Pike, B.A. Tuttle. J. Am. Ceram. Soc. 79, 2, 536 (1996)
- B. Sundarakannan, K. Kakimoto, H. Ohsato. J. Appl. Phys. 94, 8, 5182 (2003)
- D.V. Kuzenko. Izvestiya RAN. Ser. fizicheskaya 88, 5, 46 (2024). (in Russian)
- N. Kristoffel, P. Konsin. Ferroelectrics 6, 1, 2 (1973)
- I.B. Bersuker, B.G. Vekhter. Ferroelectrics 19, 1, 137 (1978)
- I.B. Bersuker. Ferroelectrics 536, 1, 1 (2018)
- A. Bussmann, H. Bilz, R. Roenspiess, K. Schwarz. Ferroelectrics 25, 1, 343 (1980)
- N.N. Kristoffel, P.I. Konsin. UFN 120, 3, 507 (1976). (in Russian)
- B. Cheng, M. Ceriotti. Phys. Rev. B 97, 5, 054102 (2018)
- W.A. Harrison. The Theory of Interatomic Potentials in Solids. Interatomic Potentials and Simulation of Lattice Defects (ed. by P.G. Gehlen et al.). Plenum Press, N.Y.-L. (1972). P. 69
- V.S. Urusov, N.N. Eremin. Atomisticheskoe kompyuternoe modelirovanie struktury i svoystv neorganicheskikh kristallov i mineralov, ikh defektov i tverdykh rastvorov. GEOS, M. (2012). 448 s. (in Russian)
- R.A. Buckingham. Proc. R. Soc. A: Math. Phys. Eng. Sci. 168, 264 (1938)
- P.M. Morse. Phys. Rev. 34, 57 (1929).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.