Physics of the Solid State
Volumes and Issues
The influence of samarium impurity defects on the luminescent and photocatalytic properties of titanium dioxide nanoparticles
Egelskii I. V. 1,2, Pugachevskii M. A. 1
1Southwest State University, Kursk, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Email: ive1996@yandex.ru, pmaximal@mail.ru

PDF
Nanoparticles of titanium dioxide doped with the rare-earth element samarium were synthesized using the hydrothermal method. The synthesized particles were characterized using transmission and scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. The bandgap of the obtained nanomaterials was determined based on the results of diffuse reflectance spectroscopy. The photoluminescent properties of the doped titanium dioxide particles were investigated at an optical excitation wavelength of 473 nm. The photocatalytic activity of the particles was studied in the degradation reaction of methylene blue in an aqueous solution under ultraviolet irradiation. The samarium-doped titanium dioxide nanoparticles exhibited enhanced photocatalytic activity compared to the undoped sample. The increased activity of the particles is attributed to the formation of additional energy levels within the bandgap due to impurity-induced defects, which leads to a reduction in the recombination probability of charge carriers generated during the photocatalytic process. The results obtained in this study demonstrate the potential application of samarium-doped titanium dioxide nanoparticles in photocatalytic applications, particularly for the removal of organic pollutants from aqueous environments. Keywords: nanoparticles, titanium dioxide, samarium doping, hydrothermal synthesis, photoluminescence, photocatalysis.
  1. K.P. Gopinath, N.V. Madhav, A. Krishnan, R. Malolan, G. Rangarajan. J. Environ. Manage 270, 110906 (2020)
  2. D. Ziental, B. Czarczynska-Goslinska, D.T. Mlynarczyk, A. Glowacka-Sobotta, B. Stanisz, T. Goslinski, L. Sobotta. Nanomaterials 10, 2, 387 (2020)
  3. A. Hashemi Monfared, M. Jamshidi. Prog. Org. Coatings 136 (2019)
  4. M.K. Singh, M.S. Mehata. Optik (Stuttg) 193, 163011 (2019)
  5. R.S. Dubey. Mater. Lett. 215, 312-317 (2018)
  6. Y.V. Kolen'ko, B.R. Churagulov, M. Kunst, L. Mazerolles, C. Colbeau-Justin. Appl. Catal. B: Environ. 54, 1, 51-58 (2004)
  7. H. Schmidt. Appl. Organomet. Chem. 15, 5, 331-343 (2001)
  8. R.S. Dubey, K.V. Krishnamurthy, S. Singh. Results Phys. 14, 102390 (2019)
  9. C.H. Zhou, S. Xu, Y. Yang, B.C. Yang, H. Hu, Z.C. Quan, B. Sebo, B.L. Chen, Q.D. Tai, Z.H. Sun, X.Z. Zhao. Electrochim. Acta 56, 11, 4308-4314 (2011)
  10. G.K. Sendil, E. Soundarrajan, M.R. Ranjitha, R.A. Klaivani, S. Raghu. Asian J. Chem. 35, 1, 45-51 (2023)
  11. N. Kumar, S.N. Hazarika, S. Limbu, R. Boruah, P. Deb, N.D. Namsa, S.K. Das. Micropor. Mesopor. Mat. 213 (2015)
  12. V.V. Zlobin, V.N. Nevedomskiy, O.V. Almjasheva. Mater. Today Commun. 36, 106436 (2023)
  13. M. Zhang, T. Chen, Y. Wang. RSC Adv. 7, 83, 52755-52761 (2017)
  14. V. Serga, R. Burve, A. Krumina, V. Pankratova, A.I. Popov, V. Pankratov. J. Mater. Res. Technol. 13, 2350-2360 (2021)
  15. B. Bulut, S. Duman. Konya J. Eng. Sci. 9, 3, 676-685 (2021)
  16. K. Mushtaq, M. Saeed, W. Gul, M. Munir, A. Firdous, T. Yousaf, K. Khan, H.M.R. Sarwar, M.A. Riaz, S. Zahid. Inorg. Nano-Met. Chem. 50, 7, 580-586 (2020)
  17. J. Moma, J. Baloyi. IntechOpen 79374 (2019)
  18. L. Zhou, M. Xie, C. Rao, H. Su, Y. Pang, H. Lou, D. Yang, X. Qiu. Chem. Eng. J. 471, 144574 (2023)
  19. N.R. Khalid, E. Ahmed, A. Rasheed, M. Ahmad, M. Ramzan, A. Shakoor, A. Elahi, S.M. Abbas, R. Hussain, N.A. Niaz. J. Ovonic Res. 11, 5, 107-112 (2015)
  20. P. Rajput, M.P. Deshpande, H.R. Bhoi, N.M. Suchak, P.H. Desai, S.H. Chaki, S.J. Pandya, M. Mishra, S.V. Bhatt, D.K. Tiwari, V. Sathe. Chem. Phys. Impact 5, 100101 (2022)
  21. Yu.A. Egelskii, I.V. Pugachevskii, M.A. Martynova, E.A. Neruchev. Izvestiya YuZGU.. Ser. Tekhnika i Tekhnologii 14, 2, 108-121 (2024) (in Russian)
  22. M. Murayama, K. Yoda, K. Shiraishi, S. Guan, S. Komuro, X. Zhao. Opt. Photonics J. 8, 5, 85014 (2018)
  23. E. Radha, D. Komaraiah, R. Sayanna, J. Sivakumar. J. Lumin. 244, 118727 (2022)
  24. A. Kutuzova, J.O. Moritz, N.G. Moustakas, T. Dontsova, T. Peppel, J. Strunk. Appl. Nanosci. 13, 10, 6951-6966 (2023)
  25. D. Ravikumar, S.C. Jeyakumar, S.S.J. Dhas, C.S. Biju, A. Sivakumar, R.S. Kumar, A.I. Almansour. Mater. Sci. Semicond. Process 173, 108125 (2024)
  26. A. Ishizawa, H. Aizawa, H. Isshiki, S. Kaku, K. Miyano, X. Zhao, M. Murayama. Jpn. J. Appl. Phys. 63, 3 (2024)
  27. I. Apostolova, A. Apostolov, J. Wesselinowa. Nanomaterials 13, 1, 13010145 (2023)
  28. S. Ahmetovic, Z. Vasiljevic, V. Rajic, D. Bartolic, M. Novakovic, N.B. Tadic, N. Cvjeticanin, M.V. Nikolic. J. Alloys Compd. 930, 167423 (2023)
  29. J. Li, B. Chu, Z. Xie, Y. Deng, Y. Zhou, L. Dong, B. Li, Z. Chen. Catal. Lett. 152, 2, 489-502 (2022)
  30. M.A. Pugachevskii, Pisma V ZhTF 38, 7, 56-63 (2012) (in Russian)
  31. M. Miodownik, E.A. Holm, G.N. Hassold, Scr. Mater. 42, 12, 1173-1177 (2000)
  32. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1967, Card 1 --- 562, Card 2 --- 387
  33. M.A. Pugachevskii, D.S. Rasseko, V.A. Stupin, N.E. Manturova, E.B. Artyushkova, E.V. Silina. J. Mol. Liq. 404, 124946 (2024)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru