Sivak A. B.
1, Chernov V. M.
21National Research Center “Kurchatov Institute”, Moscow, Russia
2A.A. Bochvar All-Russia Advanced Research Institute for Inorganic Materials, Moscow, Russia
Email: Sivak_AB@nrcki.ru, vmchernov@bochvar.ru
For bcc metals Fe and V, the most energetically favorable facet patterns of voids have been determined. Their sink strengths for self-point defects (vacancies and self-interstitial atoms) and the bias factors (relative difference in the sink strengths for self-interstitial atoms and vacancies) have been calculated. The calculations have been performed for the range of temperatures 293-1000 K and the void sizes 2.4-99a (a - a is the lattice parameter) by an object kinetic Monte Carlo method. Elastic interaction of self-point defects in stable and saddle-point configurations (elastic dipoles) with the elastic fields of voids has been calculated by means of the anisotropic theory of elasticity. Elastic fields of voids have been calculated from atomic displacements from the positions of ideal crystalline lattice sites determined using the molecular statics method. The void bias factor depends on their size and temperature. The bias factor can take values comparable to screw dislocation bias factor values for small voids (sizes are less than several tens of a). The results obtained explain the experimentally observed features of radiation swelling of pure iron and vanadium irradiated with neutrons in fast reactors. Keywords: iron, vanadium, voids, sink strengths, bias factors.
- H. Wiedersich. Radiat. Eff. 12, 1--2, 111 (1972). https://doi.org/10.1080/00337577208231128
- S.I. Golubov, A.V. Barashev, R.E. Stoller. In: Comprehensive Nuclear Materials / Eds R.J.M. Konings, R.E. Stoller. 2 Ed. Elsevier, Amsterdam (2020). V. 1. P. 717. https://doi.org/10.1016/B978-0-12-803581-8.00663-9
- V.V. Slezov, A.V. Subbotin, O.A. Osmaev. Phys. Solid State 47, 3, 477 (2005). https://doi.org/10.1134/1.1884708
- V.I. Dubinko, P.N. Ostapchuk, V.V. Slezov. J. Nucl. Mater. 161, 2, 239 (1989). https://doi.org/10.1016/0022-3115(89)90488-1
- P.N. Ostapchuk. Phys. Solid State 54, 1, 98 (2012). https://doi.org/10.1134/S106378341201026X
- P.H. Dederichs, K. Schroeder. Phys. Rev. B 17, 6, 2524 (1978). https://doi.org/10.1103/PhysRevB.17.2524
- V.A. Borodin, A.I. Ryazanov, C. Abromeit. J. Nucl. Mater. 207, 242 (1993). https://doi.org/10.1016/0022-3115(93)90266-2
- D. Carpentier, T. Jourdan, Y. Le Bouar, M.-C. Marinica. Acta Mater. 136, 323 (2017). https://doi.org/10.1016/j.actamat.2017.07.013
- S. Kaur, M. Athenes, J. Creuze. J. Comp. Phys. 454, 110987 (2022). https://doi.org/10.1016/j.jcp.2022.110987
- G.F.B. Moladje, L. Thuinet, C. Domain, C.S. Becquart, A. Legris. Comput. Mater. Sci. 183, 109905 (2020). https://doi.org/10.1016/j.commatsci.2020.109905
- J.D. Eshelby. Proc. R. Soc. A 241, 1226, 376 (1957). https://doi.org/10.1098/rspa.1957.0133
- J.D. Eshelby. Proc. R. Soc. A 252, 1271, 561 (1959). https://doi.org/10.1098/rspa.1959.0173
- A.V. Nazarov, A.A. Mikheev, A.P. Melnikov. J. Nucl. Mater. 532, 152067 (2020). https://doi.org/10.1016/j.jnucmat.2020.152067
- A.B. Sivak, P.A. Sivak. Phys. Atom. Nuclei 85, 7, 1256 (2022). https://doi.org/10.1134/S1063778822070183
- S.I. Golubov, Ye.N. Kaipetskaya. Phys. Metals Metallogr. 54, 6, 16 (1982)
- A.A. Kohnert, M.A. Cusentino, B.D. Wirth. J. Nucl. Mater. 499, 480 (2018). https://doi.org/10.1016/j.jnucmat.2017.12.005
- Y. Wang, F. Gao, B.D. Wirth. J. Nucl. Mater. 568, 153882 (2022). https://doi.org/10.1016/j.jnucmat.2022.153882
- V.M. Chernov, M.V. Leonteva-Smirnova, M.M. Potapenko, N.I. Budylkin, Yu.N. Devyatko, A.G. Ioltoukhovskiy, E.G. Mironova, A.K. Shikov, A.B. Sivak, G.N. Yermolaev. Nucl. Fusion 47, 8, 839 (2007). https://doi.org/10.1088/0029-5515/47/8/015
- A.B. Sivak, V.M. Chernov, V.A. Romanov, P.A. Sivak. J. Nucl. Mater. 417, 1--3, 1067 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.176
- E. Gaudry. In: Comprehensive Inorganic Chemistry III / Eds J. Reedijk, K.R. Poeppelmeier. 3 Ed. Elsevier, Amsterdam (2023). V. 3. P. 74. https://doi.org/10.1016/B978-0-12-823144-9.00134-5
- L. Malerba, M.C. Marinica, N. Anento, C. Bjorkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, C.S. Becquart. J. Nucl. Mater. 406, 1, 19 (2010). https://doi.org/10.1016/j.jnucmat.2010.05.017
- M.I. Mendelev, S. Han, W. Son, G.J. Ackland, D.J. Srolovitz. Phys. Rev. B 76, 214105 (2007). https://doi.org/10.1103/PhysRevB.76.214105
- A.D. Bailsford, R. Bullogh. Phil. Trans. R. Soc. A. 302, 1465, 87 (1981). https://doi.org/10.1098/rsta.1981.0158
- R.A. Johnson. Phys. Rev. 134, 5A, A1329 (1964). https://doi.org/10.1103/PhysRev.134.A1329
- E. Kroner. Arch. Rational Mech. An. 4, 273 (1959/60). https://doi.org/10.1007/BF00281393
- M.P. Puls, C.H. Woo. J. Nucl. Mater. 139, 1, 48 (1986). https://doi.org/10.1016/0022-3115(86)90163-7
- A.B. Sivak, V.M. Chernov, N.A. Dubasova, V.A. Romanov. J. Nucl. Mater. 367--370, 316 (2007). https://doi.org/10.1016/j.jnucmat.2007.03.134
- A.B. Sivak, V.A. Romanov, D.N. Demidov, P.A. Sivak, V.M. Chernov, VANT, Ser. Materialovedenie i novye materialy 100, 4, 5 (2019). (in Russian). https://elibrary.ru/item.asp?id=44630370
- L. Malerba, C.S. Becquart, C. Domain. J. Nucl. Mater. 360, 2, 159 (2007). https://doi.org/10.1016/j.jnucmat.2006.10.002
- A.B. Sivak, P.A. Sivak, V.M. Chernov. J. Nucl. Mater. 531, 152006 (2020). https://doi.org/10.1016/j.jnucmat.2020.152006
- M. Methfessel, D. Hennig, M. Scheffler. Phys. Rev. B 46, 8, 4816 (1992). https://doi.org/10.1103/PhysRevB.46.4816
- C. Kittel. Introduction to solid state physics. 8 Ed. Wiley, New York (2005). 680 p
- S.J. Zinkle. In: Comprehensive nuclear materials / Ed R.J.M. Konings. Elsevier, Amsterdam (2012). V. 1. P. 65. https://doi.org/10.1016/B978-0-08-056033-5.00003-3
- B.L. Eyre. Proc. Int. Discussion Meeting on "Defects in refractory metals". Mol, Belgium (1972). P. 311
- A.F. Bartlett, J.H. Evans, B.L. Eyre, E.H. Terry, T.M. Williams. Proc. Int. Conf. on "Radiation effects and tritium technology for fusion reactors". Gatlinburg, Tennessee, USA (1975). P. 122
- G.L. Kulcinski, B. Mastel, J.L. Brimhall. Radiat. Eff. 2, 1, 57 (1969). https://doi.org/10.1080/00337576908235581
- A.B. Sivak, P.A. Sivak, V.A. Romanov, V.M. Chernov. Inorg. Mater. Appl. Res. 6, 2, 105 (2015). https://doi.org/10.1134/S2075113315020161
- A.B. Sivak, D.N. Demidov, K.P. Zolnikov, A.V. Korchuganov, P.A. Sivak, V.A. Romanov, V.M. Chernov. VANT, ser. Materialovedenie i novye materialy 100, 4, 25 (2019). (in Russian). https://elibrary.ru/item.asp?id=44630371
- A.M. Dvoriashin, S.I. Porollo, Yu.V. Konobeev, F.A. Garner. J. Nucl. Mater. 283--287, 157 (2000). https://doi.org/10.1016/S0022-3115(00)00337-8
- S.I. Porollo, A.M. Dvoriashin, A.N. Vorobyev, Yu.V. Konobeev. J. Nucl. Mater. 256, 247 (1998). https://doi.org/10.1016/S0022-3115(98)00043-9
- N.I. Budylkin, E.G. Mironova, V.M. Chernov, V.A. Krasnoselov, S.I. Porollo, F.A. Garner. J. Nucl. Mater. 375, 359 (2008). https://doi.org/10.1016/j.jnucmat.2008.01.015
- H. Matsui, H. Nakajima, S. Yoshida. J. Nucl. Mater. 205, 452 (1993). https://doi.org/10.1016/0022-3115(93)90109-C
- H. Nakajima, S. Yoshida, Y. Kohno, H. Matsui. J. Nucl. Mater., 191--194, 952 (1992). https://doi.org/10.1016/0022-3115(92)90614-Q
- S.I. Porollo, A.M. Dvoryashin, Yu.V. Konobeev. Phys. Metals Metallogr. 123, 8, 784 (2022). https://doi.org/10.1134/S0031918X22080075
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.