Physics of the Solid State
Volumes and Issues
Sink strengths and bias factors of voids in BCC metals Fe and V
Sivak A. B. 1, Chernov V. M. 2
1National Research Center “Kurchatov Institute”, Moscow, Russia
2A.A. Bochvar All-Russia Advanced Research Institute for Inorganic Materials, Moscow, Russia
Email: Sivak_AB@nrcki.ru, vmchernov@bochvar.ru

PDF
For bcc metals Fe and V, the most energetically favorable facet patterns of voids have been determined. Their sink strengths for self-point defects (vacancies and self-interstitial atoms) and the bias factors (relative difference in the sink strengths for self-interstitial atoms and vacancies) have been calculated. The calculations have been performed for the range of temperatures 293-1000 K and the void sizes 2.4-99a (a - a is the lattice parameter) by an object kinetic Monte Carlo method. Elastic interaction of self-point defects in stable and saddle-point configurations (elastic dipoles) with the elastic fields of voids has been calculated by means of the anisotropic theory of elasticity. Elastic fields of voids have been calculated from atomic displacements from the positions of ideal crystalline lattice sites determined using the molecular statics method. The void bias factor depends on their size and temperature. The bias factor can take values comparable to screw dislocation bias factor values for small voids (sizes are less than several tens of a). The results obtained explain the experimentally observed features of radiation swelling of pure iron and vanadium irradiated with neutrons in fast reactors. Keywords: iron, vanadium, voids, sink strengths, bias factors.
  1. H. Wiedersich. Radiat. Eff. 12, 1--2, 111 (1972). https://doi.org/10.1080/00337577208231128
  2. S.I. Golubov, A.V. Barashev, R.E. Stoller. In: Comprehensive Nuclear Materials / Eds R.J.M. Konings, R.E. Stoller. 2 Ed. Elsevier, Amsterdam (2020). V. 1. P. 717. https://doi.org/10.1016/B978-0-12-803581-8.00663-9
  3. V.V. Slezov, A.V. Subbotin, O.A. Osmaev. Phys. Solid State 47, 3, 477 (2005). https://doi.org/10.1134/1.1884708
  4. V.I. Dubinko, P.N. Ostapchuk, V.V. Slezov. J. Nucl. Mater. 161, 2, 239 (1989). https://doi.org/10.1016/0022-3115(89)90488-1
  5. P.N. Ostapchuk. Phys. Solid State 54, 1, 98 (2012). https://doi.org/10.1134/S106378341201026X
  6. P.H. Dederichs, K. Schroeder. Phys. Rev. B 17, 6, 2524 (1978). https://doi.org/10.1103/PhysRevB.17.2524
  7. V.A. Borodin, A.I. Ryazanov, C. Abromeit. J. Nucl. Mater. 207, 242 (1993). https://doi.org/10.1016/0022-3115(93)90266-2
  8. D. Carpentier, T. Jourdan, Y. Le Bouar, M.-C. Marinica. Acta Mater. 136, 323 (2017). https://doi.org/10.1016/j.actamat.2017.07.013
  9. S. Kaur, M. Athenes, J. Creuze. J. Comp. Phys. 454, 110987 (2022). https://doi.org/10.1016/j.jcp.2022.110987
  10. G.F.B. Moladje, L. Thuinet, C. Domain, C.S. Becquart, A. Legris. Comput. Mater. Sci. 183, 109905 (2020). https://doi.org/10.1016/j.commatsci.2020.109905
  11. J.D. Eshelby. Proc. R. Soc. A 241, 1226, 376 (1957). https://doi.org/10.1098/rspa.1957.0133
  12. J.D. Eshelby. Proc. R. Soc. A 252, 1271, 561 (1959). https://doi.org/10.1098/rspa.1959.0173
  13. A.V. Nazarov, A.A. Mikheev, A.P. Melnikov. J. Nucl. Mater. 532, 152067 (2020). https://doi.org/10.1016/j.jnucmat.2020.152067
  14. A.B. Sivak, P.A. Sivak. Phys. Atom. Nuclei 85, 7, 1256 (2022). https://doi.org/10.1134/S1063778822070183
  15. S.I. Golubov, Ye.N. Kaipetskaya. Phys. Metals Metallogr. 54, 6, 16 (1982)
  16. A.A. Kohnert, M.A. Cusentino, B.D. Wirth. J. Nucl. Mater. 499, 480 (2018). https://doi.org/10.1016/j.jnucmat.2017.12.005
  17. Y. Wang, F. Gao, B.D. Wirth. J. Nucl. Mater. 568, 153882 (2022). https://doi.org/10.1016/j.jnucmat.2022.153882
  18. V.M. Chernov, M.V. Leonteva-Smirnova, M.M. Potapenko, N.I. Budylkin, Yu.N. Devyatko, A.G. Ioltoukhovskiy, E.G. Mironova, A.K. Shikov, A.B. Sivak, G.N. Yermolaev. Nucl. Fusion 47, 8, 839 (2007). https://doi.org/10.1088/0029-5515/47/8/015
  19. A.B. Sivak, V.M. Chernov, V.A. Romanov, P.A. Sivak. J. Nucl. Mater. 417, 1--3, 1067 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.176
  20. E. Gaudry. In: Comprehensive Inorganic Chemistry III / Eds J. Reedijk, K.R. Poeppelmeier. 3 Ed. Elsevier, Amsterdam (2023). V. 3. P. 74. https://doi.org/10.1016/B978-0-12-823144-9.00134-5
  21. L. Malerba, M.C. Marinica, N. Anento, C. Bjorkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, C.S. Becquart. J. Nucl. Mater. 406, 1, 19 (2010). https://doi.org/10.1016/j.jnucmat.2010.05.017
  22. M.I. Mendelev, S. Han, W. Son, G.J. Ackland, D.J. Srolovitz. Phys. Rev. B 76, 214105 (2007). https://doi.org/10.1103/PhysRevB.76.214105
  23. A.D. Bailsford, R. Bullogh. Phil. Trans. R. Soc. A. 302, 1465, 87 (1981). https://doi.org/10.1098/rsta.1981.0158
  24. R.A. Johnson. Phys. Rev. 134, 5A, A1329 (1964). https://doi.org/10.1103/PhysRev.134.A1329
  25. E. Kroner. Arch. Rational Mech. An. 4, 273 (1959/60). https://doi.org/10.1007/BF00281393
  26. M.P. Puls, C.H. Woo. J. Nucl. Mater. 139, 1, 48 (1986). https://doi.org/10.1016/0022-3115(86)90163-7
  27. A.B. Sivak, V.M. Chernov, N.A. Dubasova, V.A. Romanov. J. Nucl. Mater. 367--370, 316 (2007). https://doi.org/10.1016/j.jnucmat.2007.03.134
  28. A.B. Sivak, V.A. Romanov, D.N. Demidov, P.A. Sivak, V.M. Chernov, VANT, Ser. Materialovedenie i novye materialy 100, 4, 5 (2019). (in Russian). https://elibrary.ru/item.asp?id=44630370
  29. L. Malerba, C.S. Becquart, C. Domain. J. Nucl. Mater. 360, 2, 159 (2007). https://doi.org/10.1016/j.jnucmat.2006.10.002
  30. A.B. Sivak, P.A. Sivak, V.M. Chernov. J. Nucl. Mater. 531, 152006 (2020). https://doi.org/10.1016/j.jnucmat.2020.152006
  31. M. Methfessel, D. Hennig, M. Scheffler. Phys. Rev. B 46, 8, 4816 (1992). https://doi.org/10.1103/PhysRevB.46.4816
  32. C. Kittel. Introduction to solid state physics. 8 Ed. Wiley, New York (2005). 680 p
  33. S.J. Zinkle. In: Comprehensive nuclear materials / Ed R.J.M. Konings. Elsevier, Amsterdam (2012). V. 1. P. 65. https://doi.org/10.1016/B978-0-08-056033-5.00003-3
  34. B.L. Eyre. Proc. Int. Discussion Meeting on "Defects in refractory metals". Mol, Belgium (1972). P. 311
  35. A.F. Bartlett, J.H. Evans, B.L. Eyre, E.H. Terry, T.M. Williams. Proc. Int. Conf. on "Radiation effects and tritium technology for fusion reactors". Gatlinburg, Tennessee, USA (1975). P. 122
  36. G.L. Kulcinski, B. Mastel, J.L. Brimhall. Radiat. Eff. 2, 1, 57 (1969). https://doi.org/10.1080/00337576908235581
  37. A.B. Sivak, P.A. Sivak, V.A. Romanov, V.M. Chernov. Inorg. Mater. Appl. Res. 6, 2, 105 (2015). https://doi.org/10.1134/S2075113315020161
  38. A.B. Sivak, D.N. Demidov, K.P. Zolnikov, A.V. Korchuganov, P.A. Sivak, V.A. Romanov, V.M. Chernov. VANT, ser. Materialovedenie i novye materialy 100, 4, 25 (2019). (in Russian). https://elibrary.ru/item.asp?id=44630371
  39. A.M. Dvoriashin, S.I. Porollo, Yu.V. Konobeev, F.A. Garner. J. Nucl. Mater. 283--287, 157 (2000). https://doi.org/10.1016/S0022-3115(00)00337-8
  40. S.I. Porollo, A.M. Dvoriashin, A.N. Vorobyev, Yu.V. Konobeev. J. Nucl. Mater. 256, 247 (1998). https://doi.org/10.1016/S0022-3115(98)00043-9
  41. N.I. Budylkin, E.G. Mironova, V.M. Chernov, V.A. Krasnoselov, S.I. Porollo, F.A. Garner. J. Nucl. Mater. 375, 359 (2008). https://doi.org/10.1016/j.jnucmat.2008.01.015
  42. H. Matsui, H. Nakajima, S. Yoshida. J. Nucl. Mater. 205, 452 (1993). https://doi.org/10.1016/0022-3115(93)90109-C
  43. H. Nakajima, S. Yoshida, Y. Kohno, H. Matsui. J. Nucl. Mater., 191--194, 952 (1992). https://doi.org/10.1016/0022-3115(92)90614-Q
  44. S.I. Porollo, A.M. Dvoryashin, Yu.V. Konobeev. Phys. Metals Metallogr. 123, 8, 784 (2022). https://doi.org/10.1134/S0031918X22080075

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru