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Sink strengths and bias factors of voids in BCC metals Fe and V
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For bcc metals Fe and V, the most energetically favorable facet patterns of voids have been determined. Their sink

strengths for self-point defects (vacancies and self-interstitial atoms) and the bias factors (relative difference in the

sink strengths for self-interstitial atoms and vacancies) have been calculated. The calculations have been performed

for the range of temperatures 293−1000K and the void sizes 2.4−99a (a — a is the lattice parameter) by an

object kinetic Monte Carlo method. Elastic interaction of self-point defects in stable and saddle-point configurations

(elastic dipoles) with the elastic fields of voids has been calculated by means of the anisotropic theory of elasticity.

Elastic fields of voids have been calculated from atomic displacements from the positions of ideal crystalline lattice

sites determined using the molecular statics method. The void bias factor depends on their size and temperature.

The bias factor can take values comparable to screw dislocation bias factor values for small voids (sizes are less

than several tens of a). The results obtained explain the experimentally observed features of radiation swelling of

pure iron and vanadium irradiated with neutrons in fast reactors.
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1. Introduction

Traditional theory of radiation-induced metal swel-

ling [1–3] explains the growth of vacancy voids in metals

exposed to radiation by the dislocation bias (relative diffe-

rences of sink strengths for interstitial atoms and vacancies)

to self interstitial atoms (SIAs) leading to a dislocation climb

due to the prevailing SIA inflow to the dislocations and,

consequently, to void growth due to the prevailing vacancy

inflow to the voids. Voids, as dislocations, also may have

their bias that is usually considered small compared with

the dislocation bias for sufficiently large voids. Therefore,

the void bias is either neglected or its effect is included

in the dislocation bias. It is shown in [4] that such

approach leads to highly underestimated role of the void

bias in the radiation-induced void assembly evolution that

is defined by the void bias to the same degree as by

the dislocation bias. Therefore, for modelling of the

radiation-induced microstructure evolution, it is important

to know the dependences of void bias factors on void size,

concentration and temperature. It is still important to de-

termine the bias factors of various microstructure elements

because it is difficult to determine them quite accurately

by theoretical or experimental methods [5]. Therefore,

this problem is solved using multiscale modelling approach

through various combinations of computer simulation and

theoretical methods. Accuracy and validity of the findings

is determined by physical validity of the chosen approaches.

Interaction between voids and self-point defects (SPDs —
vacancies, SIAs) away from the void surface (more than

the lattice parameter a) takes place due to the void-

induced elastic field, with which point defects interact as

elastic dipoles, thus, leading to anisotropic diffusion of point

defects in the void neighborhood. Diffusion anisotropy is

determined only by the interaction between the elastic field

and saddle-point configurations of point defects [6,7] and

this type of interactions makes a decisive contribution to the

magnitude of void bias factor [7].

Sink strengths and bias factors of spherical voids are

calculated in [7–10] taking into account the effects of

anisotropic diffusion of point defects in elastic fields induced

due to the difference in symmetry of the saddle-point

configuration of point defects from the spherical one. Sink

strengths of voids in [7] are determined by solving diffusion

equations in [8] using the object kinetic Monte Carlo

(OKMC) method, in [9] using a non-stochastic method

based on the absorbing Markov chain theory, in [10] using
a phase field method. In [7–10], elastic fields of voids

are determined using the Eshelby solutions [11,12] for

spherical inclusions in an elastic isotropic [7–9] and elastic

anisotropic [10] media that differs both quantitatively and

qualitatively from a molecular static (MS) solution that

takes into account an atomistic surface configuration of

voids [13,14]. In [15–17], the bias factor of spherical voids

is determined through the difference of effective void sizes

for vacancies and SIAs using a criterion of exceedance of a

voluntary chosen threshold for the binding energy of voids
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with vacancies and SIAs. Energy of interaction between

voids and point defects is determined using the MS method

to ensure the most correct currently available determination.

However, the interaction is calculated only for point defects

(and their small clusters in [17]) in stable configurations.

Thus, the most important effect (interaction with saddle-

point configurations of point defects) that determines the

bias factor is not considered in [15–17]. Some of the

evaluations listed above give high values for the bias

factor of small-size voids (tens of percent), and all above-

mentioned works note that the bias factor decreases as the

void size increases.

This study uses the MS calculations to determine the

most energetically favorable void faceting in body-centered

cubic (BCC) Fe and V metal crystals. These metals are

of high research and practical interest, as they are used

as the basis for development of structural steels and alloys

for nuclear and thermonuclear energy reactors [18]. Then,

sink strengths for SPDs and bias factor (void size range

2−99a and temperature range 293−1200K) are calculated

for voids with the most energetically favorable faceting

using the multiscale approach. Within this approach, the

anisotropic SPD diffusion in void elastic fields determined

by the MS method is simulated by the OKMC method [19].
Interaction between the elastic fields of voids and SPDs

treated as elastic dipoles is calculated within the anisotropic

elasticity theory.

2. Models and calculation methods

2.1. Atomistic models of the studied types
of voids

Faceted void formation energy EF can be calculated to a

first approximation as a sum of products of facet areas by

the corresponding surface energies γ . If γ were independent

of the surface orientation, then spherical voids would have

the lowest EF , because such voids have the smallest surface

area with fixed volume. However, γ in metals is an

anisotropic quantity due to the crystal structure of metals.

Consequently, EF of faceted voids can be hypothetically

lower than that of spherical voids. Evaluation of γ for

BCC metals using the broken bond model [20] (bonds
between the 1st and 2nd nearest neighbors) showed that

the {110}, {100}, {211}, {111} surfaces had the lowest

values of γ in ascending order. Therefore, to determine the

most energetically favorable faceting, the size dependences

of the formation energy of the following types of voids are

calculated in the work:

− spherical voids (S);
− cube with the {100} facets (C100);
− octahedron and rhombic dodecahedron with the {110}

facets (O110 and R110);
− regular octahedron with the {111} facets (O111);
− deltoidal icositetrahedron with the {211} facets (D211).
Figure 1 shows voids representing each of the above

types. Voids are visualized by imaging the atoms on their

Table 1. Geometric relations for the given types of pores

Type
b, V 1/3 S, b2 S(n)/n2/3, a2

of void

C100 1 6 21/33 ≈ 3.77976

O111 31/3/21/6 2 · 31/2 37/6 ≈ 3.60281

O110 31/3 23/2 25/632/3 ≈ 3.70629

R110 31/2/24/3 27/2 21/63 ≈ 3.36739

D211 (122 + 71
√
2)−1/6 6

√
29−23/2

√
29−23/2

3
√

61+71/21/2
3 ≈ 3.19150

S − − π1/332/3 ≈ 3.04647

surfaces (atoms with coordination number lower than 14 —
the sum of eight first and six second nearest neighbors in

the BCC lattice). Different colors of atoms reflect different

coordination numbers: cyan for 7, yellow for 8, red for 9,

orange for 10, violet for 11, blue for 12, green for 13. With

such void visualization method, each type of facet has its

typical pattern. The {100} type void facets consist of two

planes of red and green atoms (Figure 1, a), {110} facets

consist of one plane of orange atoms (Figure 1, b, c), {111}
facets consist of three planes of cyan, orange and green

atoms (Figure 1, d), {211} facets consist of two planes of

yellow and blue atoms (Figure 1, e). Spherical voids actually
consist of a set of {100}, {110}, {111} and {211} planes —
their typical patterns can be seen clearly in Figure 1, f.

Table 1 summarizes geometrical relations, that are useful

for further discussion, for the given types of voids to link

the void volume V , surface area S, facet edge length b and

the number of vacant lattice sites n in voids. Void volume

equal to V = n� = na3/2 is assumed throughout the paper.

For ease of comparing the properties of different types of

voids, the effective void diameter is introduced:

deff(n) = (6/π)1/3V 1/3 = (3/π)1/3n1/3a . (1)

2.2. MS model for calculating void properties
and elastic fields

Energy characteristics of spherical vacancy voids with

diameter d = 2−20a and their elastic fields were de-

termined in [14] by the MS method using interatomic

interaction potentials (IIP) M07 for Fe [21] and for V [22].
These IIP describe the volumetric and surface properties

of crystals sufficiently accurately. Similar calculations for

spherical voids with d = 30−100a and for faceted voids

with deff = 3−100a are conducted in this work using the

same procedure and the same IIP as in [14].
Atomistic configuration corresponding to a void within

the material is formed by removing atoms inside a sphere

or polyhedron with a preset size from a model cubic

crystallite with size L (the center of the void is in the
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a b c

d e f

Figure 1. View of the surface atoms of voids with different shapes and with size ∼ 30a : a — cube with the facets {100} (C100); b —
octahedron with the facets {110} (O110); c — rhombic dodecahedron with the {110} (R110); d — octahedron with the facets {111}
(O111); e — deltoidal icositetrahedron with the facets {211} (D211); f — sphere (S).

center of the crystallite) with rigid boundary conditions

followed by minimization of the crystallite’s potential energy

by the gradient descent method. Minimization is carried out

until the maximum force acting on atoms becomes lower

than 10−9 eV/nm. In [14], a limiting value of 10−7 eV/nm

was used, but this value is reduced by two orders of

magnitude in this work due to much larger crystallite sizes

(maximum L in this work and in [14] is equal to 225a
and 100a , respectively) in order to keep the same level of

calculation accuracy as in [14]. L is chosen such as the

boundary conditions do not exert any noticeable effect on

the properties to be calculated (Table 2).

2.3. OKMC model for calculating sink strengths

of voids

Computational cell for OKMC calculations is a cube with

side LMC with a void in its center. Periodic boundary

conditions are imposed on the facets of the computational

cell. Thus, an equispaced cubic lattice of voids of the same

size with concentration NV = (LMC)−3 is simulated. The

presence of space correlation of the void arrangement has

no any significant effect on the results of sink strength

calculations when the absorbed defects have a three-

dimensional migration mechanism [23].
Initial positions of defects are set randomly in the cell

bulk, excluding a region within the void. The initial

coordinates of defects are a discrete set coinciding with

BCC lattice sites. Defects jump into the nearest sites

in accordance with their diffusion mechanism: vacancies

can move into any of 8 nearest neighboring sites, 〈110〉
dumbbell SIA can move into 4 nearest sites with two

different finite splitting orientations for each site (Johnson
migration mechanism [24]).
Lattice sites with at least one vacant site among the

neighboring sites (1-st and 2-nd nearest neighbors of the

BCC lattice) are referred to as the surface lattice sites.

MS calculations have shown that an SIA recombines

spontaneously with a void, if it gets into sites nearest to

the surface ones (near-surface sites). MS calculations also

have shown that vacancies that fall within the near-surface

site layer have much lower migration energy for movement

to the surface layer than in other directions. Therefore, the

OKMC calculations consider that SIAs and vacancies are

absorbed by the void if they enter a near-surface site during

migration along the crystal lattice.

To determine the probabilities of defect jumps in differ-

ent directions, it is necessary to know defect interaction

energies in the corresponding saddle-point configurations

and, consequently, the elastic field in saddle-point positions.

Elastic field created by a void within the material bulk

is calculated from the coordinates of atoms shifted from

sites of an undeformed crystal lattice determined by the

MS method. Within the used procedure [14], the values

of the strain tensor are determined only for the lattice

sites corresponding to defect positions in the stable states.

Therefore, the field for SPD saddle-point positions is

calculated by linear interpolation of the strain tensor in

Physics of the Solid State, 2025, Vol. 67, No. 3
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Table 2. Sizes of model crystallites L used for calculating the properties of different types of voids with volume V . Values of V for voids

whose formation energies and elastic fields were calculated earlier in [14] are italicized

L, a
V, �

C100 O111 O110 R110 D211 S

30 9, 35, 91 15, 57 19, 85 15, 65, 175 65 27, 59

7 189, 341, 559, 2331 143, 1247 231, 489, 891, 1469, 2255, 3281 369, 671, 1105, 1695, 2465 779 137, 229, 1037, 2277

80 − − − 3439 3005 3527, 5065

100 9009 8569 8119 7825 7607 8363

120 − − − − 15449 −

150 29449 27455 28595 29679 27395 28325

170 − − − − − 130869

190 − − − − − 359253

225 − − − 1024255 − 1047139

lattice sites corresponding to the defect position before and

after the jump. If the final defect position corresponds to a

near-surface (absorbing) site, the field for the corresponding

saddle point is determined by linear extrapolation of the

strain tensor in lattice sites, one of which corresponds to

the defect position before the jump, and the other one is

the nearest neighbor of the first site in a direction opposite

to the jump direction.

Energies of interaction between SPDs and elastic fields

of voids are calculated according to the anisotropic elasticity

theory (in [14], it is shown that calculations of void-SPD

interaction energy using the elasticity theory agree with

the direct MS calculations of this quantity) according

to [25,26], as

E(r) = −P i jεi j(r), (2)

where P i j is the dipole tensor of the given SPD configura-

tion, εi j is the strain tensor of the elastic field created by a

void in the SPD position r.

SIA and vacancy properties (dipole tensors of the stable

and saddle-point configurations) that are necessary for

calculating the interaction energy were calculated by the

MS method in [27] for Fe and in [19] for V. Applicability

of IIP R01 in Fe and V used for calculation of their

characteristics is justified in [28]. To accelerate the OKMC

calculations, elastic interaction between a void and a defect

is calculated only in a limited cubic volume with the void in

its center. This volume (cube side Lint) is selected in such

a way that the deviation introduced by this simplification

into the calculated sink strengths is lower than the statistic

calculation error. The values of Lint are summarized in

Table 3.

There is only one defect in the computational cell during

the simulation process. As soon as it is absorbed by the

void, the next defect is introduced. The calculation ends

when a sufficient number of trajectories for the preset

statistic accuracy level is achieved. The sink strength is

defined as follows (see, for example, [29])

k2 = 6λ−2〈N〉−1, (3)

where λ is the defect jump length (with the given diffusion

mechanisms, the defect may make jumps only with one

length 31/2a/2 in different directions), 〈N〉 is the mean

number of defect jumps made before the absorption by the

sink.

The void bias factor is defined in this work as

D = (k2
+ − k2

−)/(k2
+ + k2

−), (4)

where indices + and − are used for SIAs and vacancies,

respectively.

To calculate the sink strengths of voids without taking into

account elastic interaction between voids and defects (k2
0,±),

107 trajectories are calculated, taking into account (k2
±) —

105 trajectories. This provides a statistical calculation error

of 0.1% and 1%, respectively, with a confidence probability

of 99%. Such considerable number of trajectories for

calculation of k2
0,± can be simulated due to using the

accelerated Monte Carlo method [30] (algorithm 3S). This
method is also used for accelerated calculations of k2

± since

there is no elastic interaction between defects and voids

when defects are far away from voids (a region outside the

cube with side Lint, Table 3).

3. Results

3.1. Formation energies of voids

and surface energies

Figure 2 shows size dependences of the normalized

formation energy of different types of voids EF(n)/n2/3

Physics of the Solid State, 2025, Vol. 67, No. 3
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Figure 2. Size dependences of normalized formation energy of different types of voids EF(n)/n2/3 (n — number of vacant lattice sites

in a void): a — Fe; b — V. Solid lines — approximation (5).

Table 3. Values of Lint (in a) for voids with deff (in a) used for the calculations

deff 2−3 3−6 6−8 8−14 14−17 17−25 25−40 40−60 60−90 > 90

Lint 10 24 50 64 74 94 144 160 180 200

in Fe and V. Calculated data (points on curves) for faceted

voids are well approximated by a polynomial dependence

EF(n)/n2/3 = γhkl S(n)/n2/3 +

m∑

i=1

a in
−i/3, (5)

Here, S(n)/n2/3 is the geometric factor for a specified

faceting (values for different types of voids are given in

Table 1); γhkl is the surface energy of an infinite flat surface

{hkl}; γhkl and a i are the adjustable parameters; m = 2 for

all given types of void faceting in Fe and V, excluding O110

(m = 3) and R110 (m = 5) in V. Formation energies of R110-

and O111-voids with n = 15 and of R110- and D211-voids

with n = 65 are the same, because these are the same voids

in terms of atomistic approach. These voids may be assigned

to one or another faceting class due to approximations used

in transition from a real discrete atomistic void surface to

continuum void surface interpretation.

The calculated values of γhkl for Fe and V are summa-

rized in Table 4. Values of γhkl ({hkl} = {100}, {110}
and {111}) for Fe virtually coincide with those obtained

in [21] by the direct MS calculation of free flat surface

formation energy using the same interatomic interaction

potential as in this work. This agreement verifies the

calculations in this work. γsph calculated as the ratio of the

formation energy of the largest considered spherical void to

its surface area is added in Table 4. The {110} planes have

the lowest values of γhkl . EF(n)/n2/3 for S-voids are not

smooth, however, data scatter in transition between void

sizes decreases as n grows and becomes insignificant at

n & 104 (deff & 20a).
Direct experimental measurement of the metal surface

energy at temperatures much lower than the melting

temperature is a challenging problem. In [31], based on

the concepts of the tight binding approximation, a relation

is proposed that links the cohesive energy Ecoh with γ for

transition metals. For the {110} surface of BCC metals, this

relation is written as

γ110 = 0.134c
√
2a−2Ecoh, (6)

where c is equal to 1 and 1.2 for non-magnetic and magnetic

transition metals, respectively. Experimental values of Ecoh

are 4.28 and 5.31 eV in Fe and V, respectively [32], whence,

using (6), 1.91 and 1.77 J/m2, respectively, are obtained for

γ110. These values agree well with those obtained in this

work (Table 4).
It can be seen from (5) that, when n → ∞, the main

contribution to EF is given by γhklS. Hence and also from

the data in Tables 1 and 4 it follows that R110 type faceting

is the most energetically favorable for large voids with the

same volume in both Fe and V. S-voids are the next in

order of favorability. S-void formation energy in the limit of
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Table 4. Surface energies (in J/m2) for the {hkl} surface in Fe

and V

Material γ100 γ110 γ111 γ211 γsph

Fe 2.037 1.869 2.319 2.188 2.144

V 2.120 1.821 2.290 2.087 2.090

Table 5. Sink strengths of R110-voids l20,± normalized to 2πNV deff

V, � deff, a
k2
0,+

2πNV deff

k2
0,−

2πNV deff
V, � deff, a

k2
0,+

2πNV deff

k2
0,−

2πNV deff

15 2.4 2.048 2.075 1695 12 1.297 1.300

65 4.0 1.675 1.687 2465 13 1.281 1.281

175 5.5 1.508 1.516 3439 15 1.265 1.270

369 7.1 1.416 1.420 7825 20 1.247 1.251

671 8.6 1.361 1.366 29679 30 1.253 1.253

1105 10 1.324 1.326 1024255 99 1.621 1.623

large n is higher by 4% that of R110-voids. With low n up

to n = 15, R110 faceting is also most energetically favorable.

The only exception is a S-void with n = 59 in Fe, whose

formation energy is lower by 2% than that calculated for

the R110-void in accordance with (5).
Under irradiation (in accelerators and reactors), voids

with facets corresponding to low-index lattice planes are

often formed in metals, including BCC metals in the form

of dodecahedra with the {110} facets and cubes with the

{100} facets [33]. Voids in the form of dodecahedra with

the {110} facets were observed in V (dose 3 · 1022 n/cm2 at

650 ◦C [34], dose 3.6 · 1022 n/cm2 at 550 and 600 ◦C [35])
and Fe (dose 3 · 1021 n/cm2 at 450 ◦C irradiated in fast

reactors [36]). Therefore, the properties of R110-voids in Fe

and V are of high interest when radiation-induced swelling

in reactor neutron irradiation conditions is addressed.

3.2. Sink strengths and bias factors of R110-voids

Sink strengths of voids for SIAs and vacancies can be

conveniently represented in the form of a product of two

quantities: sink efficiency ξ± and sink strength of a void

that doesn’t interact with a point defect: k2
± = ξ±k2

0,±.

It is more convenient to use sink efficiencies than sink

strengths because test calculations showed that the former,

unlike the latter, weakly depend on the void concentration

(computational cell size LMC varied from 200 to 600a).
Magnitudes of k2

0,± depend only on the problem geometry

and point defect diffusion mechanism, rather than on

material and temperature. Values of k2
0,± normalized to

2πNV deff for the R110-voids with deff and NV = (400a)−3 in

BCC crystals are summarized in Table 5.

ξ±(T ) for R110-voids in Fe and V are shown in Figure 3.

Dependences are not shown for all void sizes of interest,

only for some typical ones, because many dependences

are close to each other and hamper perception. These

dependences have a different behavior depending on the

features of the interaction between the void-induced elastic

field and a migrating defect (elastic dipole).
ξ+(T ) in Fe and V for all the considered R110-void sizes

are characterized by a monotonic decrease with increasing

temperature from values ξ+ higher than 1 to the asymptotic

value ξ± = 1 (Figure 3, a, b). ξ+ takes on its maximum

value for voids with 5.5a at T = 293K and is equal to 1.43

and 1.47 in Fe and V, respectively.

ξ−(T ) in V for R110-voids with deff < 10a have a similar

form (Figure 3, d). ξ− takes on its maximum value for voids

with 7.1a at T = 293K and is equal to 1.21. ξ−(T ) in V

for R110-voids with deff > 10a become slightly lower than 1

as the temperature grows (Figure 3, d).
ξ−(T ) in Fe for all given void sizes are lower than 1 at

all temperatures and tend to 1 with temperature growth.

The minimum value of ξ− at T = 293K is equal 0.97

(Figure 3, c).
All dependences in Figure 3 are well described by the

following expression

ξ(T ) = 1 + AT−1/2 + B exp(−CT ), (7)

where A, B,C (C > 0) are the adjustable parameters.

ξ±(deff) for R110-voids in Fe and V are shown in Figure 4.

Except ξ−(deff) in Fe, all other dependences first grow

with deff and reach their maximum with deff ∼ 5.5−7.1a ,
and then decrease and approach 1 (Figure 4, a, b, d).
ξ−(deff) in Fe weakly depend on the void size and tend

asymptotically to 1 in the limit of large sizes (Figure 4, c).
Sink efficiencies of voids are fully determined by the

spatial dependence of the energy of interaction between

SPDs (elastic dipoles) and void elastic field as described

by equation (2). Dipole tensors of vacancies and SIAs

in saddle-point configurations have trigonal and monoclinic

symmetries, respectively. One saddle point and three saddle

points correspond to each jump direction for a vacancy

and SIA, respectively. Averaging of three dipole tensors

corresponding to these three saddle points gives a tensor

with a trigonal symmetry. Utilization of such averaging

in diffusion problems is justified [6,7]. In case of trigonal

symmetry of tensor P i j , P11 = P22 = P33 = TrP/3 (TrP is

the trace of tensor P i j) and |P23| = |P13| = |P12| = Pn are

true in the crystallographic system of coordinates with unit

vectors along 〈100〉 directions. Then equation (2) may be

rearranged to the following form

E(r) = −1

3
TrP Tr ε(r) − 2Pn

3∑

k=1

εk sgnPk , (8)

where Tr ε is the trace of tensor εi j , sgn is the sign function

(sgn x = x/|x | at x 6= 0, sgn x = 0 at x = 0), and index

k = 1, 2, 3 corresponds to a pair of indices i j = 23, 13, 12.
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Figure 3. Dependences of sink efficiencies of R110-voids with deff = 2.4, 5.5, 13, 30, 99a for SIAs (a, b) and vacancies (c, d) in Fe (a, c)
and V (b, d). Solid lines — approximation (7).

The first and second terms in the right-hand side of (8)
describe the parts of interaction defined by volumetric

and shear strains, respectively. Eshelby’s solution [11,12]
for a spherical inclusion in an isotropic medium used

in [7–10] to calculate sink strengths of voids gives Tr ε = 0.

Consequently, elastic interaction in such approximation is

determined only by the second term in (8). Elastic fields

induced by voids are calculated in this work by the MS

method, i. e. without using the continuous isotropic medium

approximations. According to the calculation data, the trace

of strain tensor near voids is not equal to zero and reaches

0.6% and 2% in absolute values in Fe and V, respectively,

near void surfaces (Figure 5). In some cases, this may

lead to a prevailing contribution of the first term of (8) to

the interaction energy and, thus, to the dominating role of

void-induced volumetric strains in formation of void sink

strengths and bias factors.

For quantitative determination of the effect of the first

and second terms in (8) on void sink efficiencies in Fe

and V, additional calculations of void sink efficiencies were

performed for SPDs at 293K, where TrP = 0 was set for

the saddle-point configurations of SPDs, i. e. contribution

of the first term (8) to the interaction energy was zeroed.

By comparing these values with those obtained when both

terms of (8) are taken into account, it was found that

consideration of the first term of (8) contributes to deviation

of ξ from 1 equal to:

− 40−50% and 75−80% for SIAs in Fe and V, respec-

tively;

− 40−50% for vacancies in V;
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Figure 4. Size dependences of sink efficiencies of R110-voids for SIAs (a, b) and vacancies (c, d) in Fe (a, c) and V (b, d).

− . 10% for vacancies in Fe (it is difficult to determine

more accurately because the deviation of ξ− from 1 is small

even when all terms of E are taken into account).

These results correlate well with the values of TrP/(3Pn)

listed in Table 6 (the higher the value the higher the effect

of the first term of (8) on the void sink efficiency) because

it can be seen from (8) that the relation between the first

and second terms is proportional to TrP/(3Pn).

Figures 6 and 7 show the calculated dependences of

the void bias factor on temperature and void size with

NV = (400a)−3 (void bias factor is essentially independent

of void concentration). Statistical errors approximately

correspond to the size of dots on the curves. Void bias

factor at all T and deff is positive and decreases tending

to zero as the temperature grows (Figure 6). D(deff) first

grow with deff and reach their maximum with deff = 5.5a
in Fe and deff = 10−20a in V (data scatter is caused by

temperature) and then decrease tending to zero (Figure 7).
For the smallest void (deff = 2.4a), D varies with T
from 15% to 2% in Fe and from 10% to 3% in V.

4. Discussion

A necessary condition for void growth in the traditional

theory of radiation-induced swelling of metals [1–3] is that

the void bias factor shall be lower than the dislocation bias

factor (Dd > DV ). Most of the dislocations in a material

before irradiation are of screw type. Dd depends on the

dislocation density ρd (Dd grows with ρd [37]) as opposed

to DV that is independent of NV (due to a weak dependence
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with deff = 99a in Fe (a, b) and V (c, d).

Table 6. TrP/3, Pn and TrP/(3Pn) for SPDs in Fe and V [19,27]

Metal SPD TrP/3, eV Pn, eV TrP/(3Pn)

Fe
Vacancy −1.43 −1.68 0.85

SIA 18.67 4.53 4.1

V
Vacancy −6.11 −1.20 5.1

SIA 17.11 1.29 13.3

of the sink efficiency of voids on NV as mentioned at the

beginning of Section 3.2). Figure 8 shows Dd(T ) for screw

dislocations with different ρd (from 1011 to 1015 m−2) in Fe

and V calculated according to the relations proposed in [37].
This figure also shows DV (T ) for voids with the smallest

size (2.4a) and voids with size 5.5a in Fe and 10−20a
in V that have the maximum bias factor (see Figure 7).

Atomic collision cascades resulting from energy transfer

from neutrons to crystal lattice atoms directly form void

nuclei. According to the MD simulation data concerning

cascades in Fe and V with the damaging energy up

to 50 keV in [38], it is shown that vacancy clusters

containing less than 18 vacancies remain in the cascade

region after its thermalization (times shorter than ∼ 0.1 ns).
Such number of vacancies in the cluster corresponds

approximately to the smallest R110-void with size 2.4a
addressed in this work.

As one can see in Figure 8, a sufficiently high ρd at the

irradiation start can ensure that Dd > DV is met, which is

necessary for the growth of void nuclei that are formed in

atomic collision cascades. In this case, when the bias factor

of growing voids reaches the maximum value DV,max with

deff equal to 5.5a for Fe and 10−20a (depending on T )
for V, respectively (Figure 8), DV will gradually decrease

to zero. Therefore, a decrease in ρd from the initial high

value, which usually takes place during irradiation, will not

affect the fulfilment of Dd > DV for already grown voids

and unlimited swelling will continue. There is no incubation

period for swelling in this case.
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If ρd is low enough (annealed material) to meet Dd < DV

for void nuclei, then void nuclei forming in the atomic

collision cascades will be dissolved due to a prevailing SIA

flux on them. Thus, if the dislocation bias factor doesn’t

increase during irradiation (due to the change of ρd and/or

type of dislocations), the material will not swell. In this case,

there will be an incubation period for swelling, duration

of which depends on the stability of the initial dislocation

microstructure.

If ρd is such as the dislocation bias factor is higher than

the void nuclei bias factor, but lower than the maximum

void bias factor DV,max, then void nuclei that are formed in

cascades will grow until Dd = DV is met, then these voids

will stop growing because the vacancy and SIA flux on

them will be equal to each other. The material will continue

swelling due to continued formation of new void nuclei and

growth of them to maximum permissible size. In such case,

after irradiation, a high concentration of voids with relatively

small size shall be observed, incubation period is absent.

Note that this conclusions were made on the basis of

approximations used in the traditional theory of radiation-

induced swelling of metals [1–3] (homogeneous effective

medium containing uniformly distributed sinks [23]), and

do not take into account possible spatial correlation effects,
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which may lead to local variation of bias factors and,

consequently, the local microstructure evolution may differ

from the general trend. Nevertheless, if voids are formed

locally in the material, while the most of the bulk is

free from voids, then the total void concentration will be

low and, consequently, the macroscopic change of material

volume will be small.

Let’s compare the experimental data concerning the

microstructure evolution of Fe and V with different initial

microstructure in neutron irradiation conditions in fast re-

actors (the exposed samples were annealed or cold worked

before irradiation). Irradiation results shall be preferably

compared at similar (ideally identical) temperatures and

damaging dose rates.

4.1. Iron

In [39], cold worked (CW) and annealed samples were

irradiated in the BR-10 reactor to 25.8 dpa at 400 ◦C and

dose rate of 4 · 10−7 dpa/s. Initial ρd of samples was

1−2 · 1015 and < 1013 m−2, respectively. After irradiation,

these samples swelled by 4.5% (〈d〉 ∼ 400a) and 1.7%

(〈d〉 ∼ 200a), respectively, contrary to widespread percep-

tion that cold working of a material can suppress swelling.

Similar comparison of data from [40,41] where a

CW sample (BR-10 reactor, 400 ◦C, 10−7 dpa/s, 6.2 dpa,

ρd = 2.2 · 1014 m−2) and annealed sample (BOR-60 reactor,

345 ◦C, 1.8 · 10−7 dpa/s, 58 dpa, initial ρd is not available)
shows that swelling also goes more rapidly in the CW

material: 3% per 6.2 dpa (〈d〉 ∼ 150a) in the CW sample

and 3.2% per 58 dpa in the annealed sample.

The listed experimental data for Fe fits into a picture

drawn using the model data (Figure 8, a). In CW

samples with high initial ρd , the above-mentioned case is

implemented, when Dd > DV : swelling starts without an

incubation period. In the annealed samples, Dd < DV case

is apparently implemented at the start of irradiation, which

leads to a long incubation period during which no material

swelling occurs. During irradiation of the annealed sample

according to [39], ρd grows from < 1013 to 3 · 1013 m−2,

thus, Dd > DV,max is met and, consequently, swelling takes

place.

4.2. Vanadium

For vanadium in [42,43], it is shown that the annealed

samples (initial ρd < 1012 m−2) irradiated in the JOYO and

FFTF reactors to 13.7 dpa and 34.2 dpa either do not swell at

all or swell a little in the temperature range of 400−600 ◦C.

There are no voids at all during irradiation to 13.7 dpa in the

JOYO reactor at 400 ◦C and 500 ◦C, and a limited amount

of voids is observed at 600 ◦C (swelling ∼ 1.4%). Swelling
to ∼ 1% is observed in the FFTF reactor: at 410 ◦C and

31.5 dpa 〈d〉 ∼ 14a ; at 520 ◦C and 31.9 dpa 〈d〉 ∼ 70a ; at
600 ◦C and 34.2 dpa 〈d〉 ∼ 160a (〈d〉 is the mean void size).
It is shown in [44] that V irradiated in the BR-10 reactor

at 370 ◦C and dose rate of 2.5 · 10−7 dpa/s to 1.3 dpa swells

to 0.63% (〈d〉 ∼ 15a). Initial ρd in [44] was not measured,

therefore, as the dose is not too high, ρd after irradiation

equal to ∼ 1.3 · 1015 m−2 will be used as reference.

The above-mentioned experimental data for vanadium

also fits into the model approximations (Figure 8, b). In

the annealed samples, Dd < DV case is implemented at the

start of irradiation due to low ρd , which leads to a long

incubation period during which no material swelling occurs.

In [44], a situation apparently takes place where Dd is higher
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than the bias factor of small voids due to high ρd , but lower

than the maximum void bias factor DV,max, which leads to

the start of swelling without an incubation period and to a

high concentration of relatively small voids.

5. Conclusion

For BCC metals, Fe and V, the most energetically

favorable void faceting has been established. Sink strengths

of voids for self-point defects (vacancies, interstitial atoms)
and bias factors (relative differences of sink strengths for

interstitial atoms and vacancies) have been calculated.

1. Formation energies of voids with size 2−100a and

different faceting (cubes with the {100} facets, octahedra

with the {110} facets, rhombic dodecahedra with the {110}
facets, regular octahedra with the {111} facets, deltoidal

icositetrahedra with the {211} facets, spheres) have been

calculated by the molecular statics method for BCC metals,

Fe and V. Surface energies of the free {100}, {110}, {111},
{211} surfaces have been determined as asymptotes of

size dependences of void formation energies in the limit

of their large sizes. The {110} surface has the smallest

surface energy. When voids are larger than 2.4a , a rhombic

dodecahedron with the {110} facets — R110 is the most

energetically favorable void faceting type.

2. For R110-voids in Fe and V, their sink strengths for

SPDs and bias factors (void size range 2.4−99a and tem-

perature range 293−1200K) have been calculated using the

multiscale approach. Within this approach, the anisotropic

SPD diffusion in void elastic fields determined by the MS

method has been simulated by the OKMC method.

2.1. Void-induced volumetric and shear elastic strains are

comparable with each other in magnitude as opposed to

the commonly used Eshelby solution for void bias factor

calculation for a spherical inclusion in an isotropic medium

that is free from volumetric strains. Volumetric strains

make a significant, and sometimes the main, contribution

to formation of sink strengths and bias factors of voids in Fe

and V.

2.2. Void bias factor decreases as the temperature grows.

Size dependence of the void bias factor is non-monotonic.

In the small void size range (from 2.4a), the bias factor

grows as the void size increases and reaches its maximum

values at 5.5a in Fe and 10−20a in V (a range of values

is given for V because this size varies with temperature).
Then, its values decrease and tend to zero. The void bias

factor may take on values comparable in magnitude with the

screw dislocation bias factor for voids smaller than several

tens of a .
3. Within the traditional theory of radiation-induced

swelling with parameters determined in this work, the

features of void growth under neutron damaging irradiation

conditions in Fe and V with different initial dislocation

microstructures are considered. Calculation and theoretical

data of this work explain the experimentally observed

radiation-induced swelling behavior of pure Fe and V

exposed to neutron radiation in fast reactors.
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