Physics of the Solid State
Volumes and Issues
Dielectric properties and kinetics of induced phase transition in ceramic compounds 16BiScO3-42PbTiO3- 42PbMg1/3Nb2/3O3
Kamzina L.S.1, Zalesskii V. G1
1Ioffe Institute, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru

PDF
The relationship between the depolarization temperatures Td and the morphotropic phase transition TF-R in the relaxor ceramics 16BiScO3-42PbTiO3-42PbMg1/3Nb2/3O3, as well as the kinetics of nucleation of ordered ferroelectric phases in an electric field applied below the morphotropic phase transition temperature, were studied. The coincidence of these temperatures was found, which is associated with a one-stage transition of the polarized sample to the relaxor phase. It was suggested that possible reasons may be both the closeness of the composition to relaxors with a spontaneous phase transition, in which these temperatures coincide, and large sizes of the polar regions. The field-temperature phase diagram was constructed for cooling the sample in an electric field (FC mode). In the study of time dependences of permittivity in an electric field at room temperature, it was found for the first time that the monoclinic phase after a short time interval of ~300 s in high electric fields is transformed into another ferroelectric tetragonal phase. This phase is not stable after the electric field is removed, and the sample returns to its original state before the field was applied. Keywords: Key words: ceramics, relaxors, ferroelectricity, phase diagram, induced phase transition.
  1. R. Weis, T. Gaylord. Appl. Phys. A 37, 191 (1985)
  2. S.E. Park, T.R. Shrout. J. Appl. Phys. 82, 1804 (1997)
  3. E. Sun, W. Cao. Prog. Mater. Sci. 65, 124 (2014)
  4. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, X. Geng. Prog. Mater Sci. 68, 1 (2015)
  5. S. Zhang, F. Li. J. Appl. Phys. 111, 031301 (2012)
  6. K. Uchino. Piezoelectric actuators and ultrasonic motors. Boston Kluwer (1997). 350 p
  7. F. Mumtaz, G.H. Jaffari, Q. Hassan, S.I. Shah. Physica B: Condensed Matter 538, 213 (2018)
  8. L. Soibam, A.D. Mani. Mater. Today 5, 2064 (2018)
  9. J. Wu, H. Shi, T. Zhao, Y. Yu, S. Dong. Adv. Funct. Mater. 26, 7186 (2016)
  10. J. Chen, G. Liu, J. Cheng, S. Dong. Appl. Phys. Lett. 107, 032906 (2015)
  11. J. Chen, J. Cheng, S. Dong. J. Adv. Dielectr. 4, 1430002 (2014)
  12. A.A. Bush, K.E. Kamentsev, M.A. Bekhtin, A.G. Segalla. FTT 59, 36 (2017) (in Russian)
  13. M.V. Talanov, A.A. Bush, K.E. Kamentsev, V.P. Sirotinkin, A.G. Segalla. J. Am. Ceram. Soc. 101, 683 (2018)
  14. M.V. Talanov, A.A. Bush, K.E. Kamentsev, V.P. Sirotinkin, A.G. Segalla. Ferroelectrics 538, 105 (2019)
  15. C.J. Stringer, N.J. Donnelly, T.R. Shrout, C.A. Randall, E.F. Alberta, W.S. Hackenberger. J. Amer. Ceram. Soc. 91, 1781 (2008)
  16. K. Shahzad, L. Li, Z. Li, G. Shabbir, H. Li, X. Yao. Ferroelectrics 402, 142 (2010)
  17. A.I. Spitsin, A.A. Bush,K.E. Kamentsev, V.P. Sirotinkin, M.V. Talanov. Tonkie khimicheskie tekhnologii, 14 (79), (2019) (in Russian)
  18. E. Sapper, S. Schaab, W. Jo, T. Granzow, J. Rodel. J. Appl. Phys. 111, 014105 (2012)
  19. Y. Hiruma, H. Nagata, T. Takenaka. J. Appl. Phys. 105, 084112 (2009)
  20. L.S. Kamzina. FTT 64, 665 (2022). (in Russian)
  21. A.B. Kounga, T. Granzow, E. Aulbach, M. Hinterstein, J. Rodel. J. Appl. Phys. 104, 024116 (2008)
  22. L.S. Kamzina. FTT 66, 579 (2024). (in Russian)
  23. V. Bobnar, Z. Kutnjak, R. Pirc, A. Levstik. Phys. Rev. B 60, 6420 (1999)
  24. R.E. Eitel, S.J. Zhang, T.R. Shrout, C.A. Randall, I. Levin. J. Appl. Phys. 96, 2828 (2004)
  25. J. Chaigneau, J.M. Kiat, C. Malibert, C. Bogicevic. Phys. Rev. B 76, 0941111 (2007)
  26. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, Eva Sapper, K. Wang, J. Rodel. J. Electroceram. 29, 71 (2012)
  27. E.V. Colla, D. Vigil, J. Timmerwilke, M.B. Weissman, D.D. Viehland, B. Dkhil. Phys. Rev. B 75, 214201 (2007)
  28. X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling, M. Marsilius, H.J. Kleebe, J. Rodel. J. Appl. Phys. 106, 044107 (2009)
  29. E.V. Colla, M.B. Weissman. Phys. Rev. B 72, 104106 (2005)
  30. K. Okadzaki. Tekhnologiya keramicheskikh dielektrikov. Energiya, M. (1976). 336 s. (in Russian)
  31. F. Chu, N. Setter, A.K. Tagantsev. J. Appl. Phys. 74, 5129 (1993)
  32. F. Chu, I.M. Reaney, N. Setter. Ferroelectrics 151, 343 (1994)
  33. F. Chu, I.M. Reaney, N. Setter. J. Appl. Phys. 77, 1671 (1995)
  34. G. Xie. Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Oct. 27-30, Chengdu, Sichuan, China, 537 (2017)
  35. L.S. Kamzina, M.V. Talanov, A.A. Bush, A.I. Spitsin. FTT 61, 8, 1483 (2019) (in Russian)
  36. A.A. Bush, V.G. Sirotinkin, A.G. Segallo, A.I. Spitsin. Kristallografiya 63, 93 (2018) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru