Electrostatic mechanism of ferroelectric instability
Arseev P. I. 1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: ars@lpi.ru
A microscopic mechanism of ferroelectric instability is proposed, based on the idea that in the ferroelectric phase, the main state of the system should be a state with a nonzero constant electric field inside the crystal. It is shown that this approach can provide a unified description of the physical mechanism for transitions that have traditionally been considered transitions of different types: "displacement type" and the "order-disorder" type. The dependence of free energy on polarization differs from the Ginzburg-Landau functional, although it has similar properties and is reduced to the usual Ginzburg-Landau functional near the transition temperature. Keywords: Ferroelectric phase transition.
- G.A. Smolensky, V.A. Bokov, V.A. Isupov, N.N. Kraynik, R.E. Pasynkov, M.S. Shur. Segnetoelektriki i antisegnetoelektriki. Nauka, M. (1971) p. 476. (in Russian)
- V.G. Vaks. Vvedenie v mikroskopicheskuyu teoriyu segnetoelektrichestva. Nauka, M. (1973) p. 328. (in Russian)
- B.A. Strukov, A.P. Levanyuk. Fizicheskie ocnovy cetnetoelektricheskikh yavleniy v kristallakh. Nauka, M. (1983) p. 240. (in Russian)
- L.D. Landau, E.M. Lifshitz. Elektrodinamika sploshnykh sred. Gl. 2. Nauka, M. (1982) p. 621. (in Russian)
- R. Resta. Ferroelectrics 136, 51 (1992)
- R. Resta. Rev. Mod. Phys. 66, 899 (1994)
- K. Rabe, Ch.H. Ahn, J.-M. Triscone (Eds.) Physics of ferroelectrics, Topics in applied Physics 105. Springer, Berlin Heidelberg (2007)
- A.P. Levanyuk, B.A. Strukov. Encyclopedia of Condensed Matter Physics, ch. Ferroelectricity, 192--201, Elsevier (2005)
- G.A. Smolensky, N.N. Krainik. Sov. Phys. Usp. 97, 657 (1969). (in Russian)
- W. Zong, D. Vanderbilt, K.M. Rabe. Phys. Rev. Lett. 73, 1861 (1994)
- Jingtong Zhang, L. Bastogne, Xu He, Gang Tang, Yajun Zhang, P. Ghosez, Jie Wang. Phys. Rev. B 108, 134117 (2023)
- L. Gigli, M. Veit, M. Kotiuga, G. Pizzi, N. Marzari, M. Ceriotti. Nature: npj computational materials 8, 209 (2022)
- R.A. Evarestov, A.V. Bandura. J. Comput. Chem. 33, 1123 (2012)
- S. Saha, T.P. Sinha, Abhijit Mookerjee. Phys. Rev. B 62, 8828 (2000)
- D. Bagayoko, G.L. Zhao, J.D. Fan, J.T. Wang. J. Phys.: Condens. Matter 10, 5645 (1998)
- M. Dawber, I. Farnan, J.F. Scott. Am. J. Phys. 71, 819 (2003)
- S.V. Kalinin, Y. Kim, D.D. Fong, A.N. Morosovska. Rep. Prog. Phys. 81, 036502 (2018)