Physics of the Solid State
Volumes and Issues
Electrostatic mechanism of ferroelectric instability
Arseev P. I. 1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: ars@lpi.ru

PDF
A microscopic mechanism of ferroelectric instability is proposed, based on the idea that in the ferroelectric phase, the main state of the system should be a state with a nonzero constant electric field inside the crystal. It is shown that this approach can provide a unified description of the physical mechanism for transitions that have traditionally been considered transitions of different types: "displacement type" and the "order-disorder" type. The dependence of free energy on polarization differs from the Ginzburg-Landau functional, although it has similar properties and is reduced to the usual Ginzburg-Landau functional near the transition temperature. Keywords: Ferroelectric phase transition.
  1. G.A. Smolensky, V.A. Bokov, V.A. Isupov, N.N. Kraynik, R.E. Pasynkov, M.S. Shur. Segnetoelektriki i antisegnetoelektriki. Nauka, M. (1971) p. 476. (in Russian)
  2. V.G. Vaks. Vvedenie v mikroskopicheskuyu teoriyu segnetoelektrichestva. Nauka, M. (1973) p. 328. (in Russian)
  3. B.A. Strukov, A.P. Levanyuk. Fizicheskie ocnovy cetnetoelektricheskikh yavleniy v kristallakh. Nauka, M. (1983) p. 240. (in Russian)
  4. L.D. Landau, E.M. Lifshitz. Elektrodinamika sploshnykh sred. Gl. 2. Nauka, M. (1982) p. 621. (in Russian)
  5. R. Resta. Ferroelectrics 136, 51 (1992)
  6. R. Resta. Rev. Mod. Phys. 66, 899 (1994)
  7. K. Rabe, Ch.H. Ahn, J.-M. Triscone (Eds.) Physics of ferroelectrics, Topics in applied Physics 105. Springer, Berlin Heidelberg (2007)
  8. A.P. Levanyuk, B.A. Strukov. Encyclopedia of Condensed Matter Physics, ch. Ferroelectricity, 192--201, Elsevier (2005)
  9. G.A. Smolensky, N.N. Krainik. Sov. Phys. Usp. 97, 657 (1969). (in Russian)
  10. W. Zong, D. Vanderbilt, K.M. Rabe. Phys. Rev. Lett. 73, 1861 (1994)
  11. Jingtong Zhang, L. Bastogne, Xu He, Gang Tang, Yajun Zhang, P. Ghosez, Jie Wang. Phys. Rev. B 108, 134117 (2023)
  12. L. Gigli, M. Veit, M. Kotiuga, G. Pizzi, N. Marzari, M. Ceriotti. Nature: npj computational materials 8, 209 (2022)
  13. R.A. Evarestov, A.V. Bandura. J. Comput. Chem. 33, 1123 (2012)
  14. S. Saha, T.P. Sinha, Abhijit Mookerjee. Phys. Rev. B 62, 8828 (2000)
  15. D. Bagayoko, G.L. Zhao, J.D. Fan, J.T. Wang. J. Phys.: Condens. Matter 10, 5645 (1998)
  16. M. Dawber, I. Farnan, J.F. Scott. Am. J. Phys. 71, 819 (2003)
  17. S.V. Kalinin, Y. Kim, D.D. Fong, A.N. Morosovska. Rep. Prog. Phys. 81, 036502 (2018)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru