Physics of the Solid State
Volumes and Issues
Effect of oxygen and carbon impurities on the parameters of a silicon cluster with a vacancy
Sulajmanov N.T.1, Machkamov Sh.M.1, Tashmetov M.Yu.1, Nazarmamatov Sh.M.1, Egamov S.R.1, Rafikov A.K.1, Erdonov M.N.1, Holmedov Kh.M.2
1Institute of Nuclear Physics, Uzbek Academy of Sciences, Tashkent, Uzbekistan
2Tashkent University of Information Technologies, Tashkent, Uzbekistan
Email: nadimbeksulaymanov@gmaile.com

PDF
Computer-based simulation in the density functional method approximation was used to study the effect of a vacancy on the structure of Si29H36 and Si87H70 clusters modified by the introduction of O and C atoms. It is shown that the Oi-Si-Ci complex is formed in a vacancy-free cluster with simultaneous introduction of C and O atoms, and 3H + Ci +Si and Si-O-V type complexes are formed in clusters with a vacancy. It was determined that carbon and oxygen positions depended to a greater extent on the size of a nanocluster, while oxygen in the Si80Si70 clusters interacted with the vacancy to form an A-center. It was found that deep levels might be caused by variation of the silicon cluster electron states due to the interaction between background impurities and a vacancy in the silicon cluster lattice cell. It was established that simultaneously introduced O and C atoms, depending on the nanocluster size and if interstitial silicon and hydrogen atoms were present, gave rise to formation of weakly interacting defective complexes and hydrogen atom migration into the nanocluster. Keywords: silicon, nanocluster, defect, vacancy, process impurities, computer-based simulation, structure, lattice, ab initio calculation methods, energy levels, band gap.
  1. M.G. Milvidsky, V.B Osvensky. Strukturnye defekty v monokristallakh poluprovodnikov. Metallurgiya, M. 1984, 256 s.: il
  2. Voprosy radiatsionnoy technologii poluprovodnikov. Pod red. L.S. Smirnova. Novosibirsk, Nauka. 1980. s. 294. (in Russian)
  3. V.I. Fistul, Atomy legiruyushchikh primesey v poluprovodnikakh, M., Fizmatlit. 2004. S. 400. (in Russian)
  4. M.G. Mil'vidskii, V.V. Chaldyshev. FTP, 32, 513 (1998). (in Russian)
  5. S.S.Nekrashevich, V.A.Gritsenko. FTT 56, 209 (2014). (in Russian)
  6. D.A. Lozhkina, E.V. Astrova, R.V. Sokolov, D.A. Kirilenko, A.A. Levin, A.V. Parfenieva, V.P. Ulin. FTP, 55, 373 (2021). (in Russian)
  7. I.F. Tchervony, A.V. Bubunets. Scientific J. "ScienceRice". 11, 2, 16 (2015)
  8. V.S. Vendamani, Hamad Syed, V. Saikiran, A.P. Pathak, S. Venugopal Rao, V.V. Ravi Kanth Kumar, S.V.S.J. Nageswara Rao. Mater. Sci. 50, 1666-1672 (2015)
  9. K. Tokarska. Facile production of ultra-fine silicon nano-particles. 2020 Facile production of ultra-fine silicon nanoparticles. R. Soc. Open Sci. 7: 200736. (1-9). http://dx.doi.org/10.1098/rsos.200736
  10. H.M. Ayedh, E.V. Monakhov. J. Coutinho. Phys. Rev. Mater. 4, 064601 (2020)
  11. M.Yu. Tamshetov, Sh.M. Mahkamov, F.T. Umarova, A.B. Normurodov, N.T. Sulaimanov, A.V. Khugaev, Kh.M. Kholmedov. FTP, 57, 2, 106-112 (2023). (in Russian). DOI:10.21883/FTP.2023.02.55330.3335
  12. Erik W. Draeger, C. Jeffrey. Grossman, Andrew J. Williamson, Giulia Galli. J. OF CHEM. PHYS., 120, 22, 10807-10814. (2004). [DOI: 10.1063/1.1738633]
  13. Frank Neese. Software update: the ORCA program system, version 4.0, 17 July 2017. // WIREs Computational Molecular sciences, Vol. 8, Issue 1, Jan./Febr. 2018, e1327. https://doi.org/10.1002/wcms.1327; F. Neese. The ORCA program system // Wiley Interdisciplinary Reviews: Computational Molecular Science. 2, N 1. P. 73-78. (2012)
  14. G. Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Sijders, T. Ziegler. J. Comp. Chem. 22, 931 (2001)
  15. F. Weigend, R. Ahlrichs. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys., 7, 3297-3305 (2005). https://doi.org/10.1039/b508541a
  16. G. Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Sijders, T. Ziegler. J. Comp. Chem. 22, 931 (2001)
  17. E. Van Lenthe, E.J. Baerends. J. Comp. Chem. 24, 1142 (2003)
  18. Sh. Makhkamov, F.T. Umarova, A.B. Normurodov, N.T. Sulaymanov, O.B. Ismailova. Uzbek. Phys. J. 18, 82 (2016)
  19. L.I. Murin, B.G. Svensson, J.L. Lindstro m, V.P. Markevich and C.A. Londos. Solid State Phenomena. 156-158, 129-134 (2010)
  20. International Tables for Crystallography. Volume A: Space-group symmetry / Edited by M.I. Aroyo. --- International Union of Crystallography, 2016 --- ISBN 978-0-470-97423-0. (https://it.iucr.org/A c/)
  21. V.M. Babich, N.I. Bletskan, E.F. Venger. Kislorod v monokristallakh kremniya Kiev. InterpresLTD, 1997. 240 s. (in Russian)
  22. A.A. Gnidenko, V.G. Zavodinsky. FTP, 42 (7), 817-822 (2008). (in Russian)
  23. V.V. Lukjanitsa. Semiconductors, 37, 4, 404-413 (2003) Translated from Fizika i Tekhnika Poluprovodnikov, 37, 4, 422-431 (2003)
  24. G.D. Wotkins, K.L. Brower. Phys. Rev. Lett., 36, 1329 (1976). DOI: https://doi.org/10.1103/PhysRevLett.36.1329
  25. Noura D. Alkhaldi, Sajib K. Barman, Muhammad N. Huda. Heliyon. 5, 11, e02908 (2019)
  26. P.A. Selishchev. Semiconductors, 35, 1, 11-14 (2001)
  27. V.K. Lyuev, A.M. Karmokov. Sovremennye naukoemkie tekhnologii, 5 2, 262-265 (2016). (in Russian)
  28. Silicon Nanocrystals: Fundamentals, Synthesis and Applications. Edited by Lorenzo Pavesi and RasitTuran --- 2010 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim, P. 652. ISBN: 978-3-527-32160-5
  29. C.A. Londos and J. Grammatjkak. Phys. Stat. Sol. (a) 109, 421-426 (1988)
  30. Z.M. Khakimov, F.T. Umarova, N.T. Sulaymonov, A.E. Kiv, A.A. Levin. Int. J. Quantum Chem. 93, 5, 351-359 (2003)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru