Relationship between phase and relaxation transitions in partially crystalline polymers based on FAR-IR spectroscopy data
Ryzhov V.A.1
1Ioffe Institute, St. Petersburg, Russia
Email: v.ryzhov@mail.ioffe.ru
The IR spectra of partially crystalline polymers polyacrylonitrile (PAN) and polytetrafluoroethylene (PTFE) in the region of manifestation of the spectrum of their crystal lattices (10-150 cm-1) at temperatures from 4.2 to 300 K are presented and analyzed. The increased sensitivity of the spectral parameters of the bands of these spectra to crystalline effects allows us to trace structural rearrangements at the molecular level. The intensity, half-widths, and position of the maximum of the bands of external translational and rotational modes change especially sharply during phase transitions (PT), indicating a correlation between the PT and the vibrational properties of the external lattice modes. Analysis of these changes shows that during the PT from a low-temperature structure to a more disordered high-temperature structure, conditions arise for the manifestation of relaxation processes (RP) in the system, indicating the relationship between PT and RP, consisting in the fact that the former often precede and are responsible for the manifestation of the latter in the amorphous regions of the polymer. Keywords: partially crystalline polymers PAN and PTFE, lattice IR spectra, solid-state phase transitions, γ- and β-relaxations, the relationship between PT and RP.
- K.L. Ngai. Relaxation and Diffusion in Complex Systems. Oxford Press, NY (2011). 835 p
- V.A. Bershtein, V.M. Yegorov. Differentsialnaya skaniruyushchaya kalorimetriya v fizikokhmii polimerov. (Khimiya, L., 1990). p. 248. (in Russian)
- P.J. Ratri, K. Tashiro. Polym. J. 45, 1, 1107 (2013)
- R.S.Berry, B.M.Smirnov. UFN 175, 4, 368 (2005). (in Russian)
- V.M. Egorov, P.N. Yakushev. FTT 60, 9, 1824 (2018). (in Russian)
- U. Coffey, M. Evans, P. Grigorini. Molekulyarnaya diffuziya i spektry. (Nauka, M. (1987). P. 255 (in Russian)
- D.I. Kamalova, A.B. Remizov, M.Kh. Salakhov. Asian J. Spectr. 11, 3, 95 (2007)
- N. Cohen, A. Greenbaum, Y. Feldman. eXPRESS Polym. Lett. l, 10, 704 (2007)
- K.W Jonson, J.F. Rabolt. J. Chem. Phys. 58, 7, 4536 (1973)
- R. Hodyss, T. Vu, M.L. Cable, M. Choukroun, M. Malaska, H.E. Maynard-Casely, EPSC Abstr. 13, EPSC-DPS2019-1044-1 (2019)
- H. Abramczyk, K. Paradowska-Moszkowska. Chem. Phys. 265, 2, 177 (2001)
- D. Sawai, T. Kanamoto, H. Yamazaki, R. Hisatani. Macromolecules 237, 8, 2839 (2004)
- Y. Wolanov, A.Y. Feldman, H. Harel, G. Marom. eXPRESS Polym. Lett. 3, 7, 452 (200)
- C.L. Liang, S. Krimm. J. Polym. Sci. 31, 3, 513 (1958)
- H. Tadokoro, S. Murahashi, R. Yamadera, T. Kamei. J. Polym. Sci. 1, 3029 (1963)
- G.W. Chantry, H.A. Gebbie. H. Nature 208, 5008, 378 (1965)
- G.W. Chantry. IEEE Trans. Microw. Theory Techn. 25, 1, 6 (1977)
- G.W. Chantry, J.W. Fleming. Infrared Phys. 12, 2, 101 (1972)
- S. Glaston, K. Laidler, G. Eyring. The Theory of Rate Processes. McGraw Hill, New York (1941). 611 p
- V.A. Bershtein, V.A. Ryzhov. Adv. Polym. Sci. 14, 43 (1994)
- C.J. Reid, M.W. Evans. J. Chem. Phys. 76, 5, 2576 (1982)
- W.F. Frank, U. Leute, K.L. Infrared Millim. Wave 8, 2, 51 (1983)
- K.J. Ivin. Structural studies of macromolecules by spectroscopic methods. Wiley-Intersci. Publ., London (1976). 339 p
- C. Ennis, R. Auchettl, D.R.T. Appadoo, E.G. Robertson. Phys. Chem. Chem. Phys. 20, 23593 (2018). https://doi.org/10.1039/C8CP04219E
- S. Zhang, H. Jia, M. Song, H. Shen, L. Dongfei, L. Haibo. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 246, 119065 (2021)
- E. Knozinger, D. Leutloff. J Chem. Phys. 74, 5, 4812 (1981). https://doi.org/10.1063/1.441760
- W.E. Putnam, D.M. McEarchen Jr., J.E. Kilpatrick, J. Chem. Phys. 42, 2, 749 (1965)
- B.H. Torrie, B.M. Powell. Mol. Phys. 75, 1, 613 (1992)
- J. Barnes, B. Fanconi. J. Phys. Chem. Ref. Data 7, 1309 (1978). https://doi.org/10.1063/1.555586
- W.F.X. Frank, H. Schmidt, B. Heise, G.W. Chantry, M.E.A. Cudby. Polymer. 22, 17 (198)
- D.H Reneker, J. Mazur. Polymer. 25, 1, 1549 (1984)
- G. Calleja, A. Jourdan, B. Ameduri, J.-P. Habas. Eur. Polym. J. 49, 8, 2214 (2013)
- G. Brandli, A. Sievers. Phys. Rev. B 5, 9, 3550 (1972)
- G.W. Chantry, J.W. Fleming, E.A. Nicol, H.A. Willis, M.E.A. Cudby, F.J. Boerio. Polymer. 15, 12, 69 (1974)
- L. Piseri, F. Cabassi, G. Masetti. Chem. Phys. Lett. 33, 2, 338 (1975)
- G.W. Chantry, J. Fleming, E.A. Nicol, H.A. Willis, M.E.A. Cudby. Chem. Phys. Lett. 16, 2, 141 (1972)
- J.L. Koenig, F.J. Boerio. J. Chem. Phys. 50, 7, 2823 (1969)
- J.L. Koenig, F.J. Boerio. J. Chem. Phys. 52, 8, 4170 (1970).
- F.J. Boerio, J.L. Koenig. J. Chem. Phys. 54, 3667 (1971). doi: 10.1063/1.1675411
- A. Oshima, S. Ikeda, T. Seguch, Y. Tabata. Radiat. Phys. Chem. 49, 5, 581 (1997)
- V.J. Mcbrierty. Comprehensive Polymer Science and Supplements 1, 397 (1989)
- E.R. Neagu, R.M. Neagu. J. Optoelectron. Adv. Mate. 8, 3, 962 (2006)
- N.S. Murthy, Z.-G. Wang, B.S. Hsiao. Macromolecules 32, 17, 5594 (1999)
- L.A. Kvacheva, I.I. Perepechko. Akust. Zh., 2, 3, 400 (1965). (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.