Physics of the Solid State
Volumes and Issues
A RHEED study of the initial stages of Mn5Ge3 epitaxial growth on Si(111)
Yakovlev I.A. 1, Lukyanenko A.V. 1, Tarasov A. S. 1, Varnakov S. N. 1
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: yia@iph.krasn.ru, lav@iph.krasn.ru, taras@iph.krasn.ru, vsn@iph.krasn.ru

PDF
The results of the crystal structure investigation of the interface layer and surface formed during the Mn5Ge3 thin film growth on silicon are presented in this paper. The dynamics of phase composition changes in the film at the initial stages of Mn5Ge3 growth on Si(111) 7x7 at 390 oC was studied by the reflected high-energy electron diffraction method. The diffraction data were analyzed by combining experimental patterns and calculated electron diffraction patterns for the expected phases, taking into account the data from the equilibrium phase diagrams. It was found that during the deposition of the first 0.5 nm, the formation of MnSi silicide predominates, then Mn5Ge3 begins to form together with MnSi at a film thickness of 2.5 nm. The single-phase Mn5Ge3 film begins to grow only at a thickness of more than 10 nm. Using atomic force microscopy, it was shown that when maintaining the stoichiometric ratio of Mn and Ge flows, during further growth on a silicon substrate without a buffer layer, a layer-by-layer plus island growth mode of the Stranski-Krastanov is realized. Keywords: manganese germanide, manganese silicide, thin films, electron diffraction, ferromagnets, molecular beam epitaxy, spintronics.
  1. I. vZutic, J. Fabian, S. Das Sarma. Rev. Mod. Phys. 76, 2, 323 (2004). https://doi.org/10.1103/RevModPhys.76.323
  2. A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Dieny, P. Pirro, B. Hillebrands. J. Magn. Magn. Mater. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711
  3. R. Jansen. Nature Mater. 11, 5, 400 (2012). https://doi.org/10.1038/nmat3293
  4. V.V. Ustinov, I.A. Yasyulevich, N.G. Bebenin. Phys. Met. Metallogr. 124, 14, 1745 (2023)
  5. N.G. Bebenin. JETP Lett. 118, 5, 336 (2023)
  6. L.A. Fomin, I.V. Malikov, V.A. Berezin. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 16, 4, 448 (2022)
  7. V.V. Marchenkov, V.Y. Irkhin. Phys. Metals Metallogr. 122, 12, 1133 (2021)
  8. A.S. Samardak, A.G. Kolesnikov, A.V. Davydenko, M.E. Steblii, A.V. Ognev. Phys. Metals Metallogr. 123, 3, 238 (2022)
  9. V.D. Buchelnikov, D.R. Baigutlin, V.V. Sokolovskiy, O.N. Miroshkina. Phys. Metals Metallogr. 124, 2, 118 (2023)
  10. A.S. Tarasov, I.A. Tarasov, I.A. Yakovlev, M.V. Rautskii, I.A. Bondarev, A.V. Lukyanenko, M.S. Platunov, M.N. Volochaev, D.D. Efimov, A.Yu. Goikhman, B.A. Belyaev, F.A. Baron, L.V. Shanidze, M. Farle, S.N. Varnakov, S.G. Ovchinnikov, N.V. Volkov. Nanomater. 12, 1, 131 (2022). https://doi.org/10.3390/nano12010131
  11. A. Spiesser, I. Slipukhina, M.-T. Dau, E. Arras, V.L. Thanh, L. Michez, P. Pochet, H. Saito, S. Yuasa, M. Jamet, J. Derrien. Phys. Rev. B 84, 16, 165203 (2011). https://doi.org/10.1103/PhysRevB.84.165203
  12. Y. Kim, K.H. Kang, J.H. Kim, E.J. Kim, K. Choi, W.B. Han, H.-S. Kim, Y. Oh, C.S. Yoon. J. Alloys Compd 644, 464 (2015). https://doi.org/10.1016/j.jallcom.2015.05.061
  13. Songlin, Dagula, O. Tegus, E. Bruck, F.R. de Boer, K.H.J. Buschow. J. Alloys Compd 337, 1-2, 269 (2002)
  14. J. Tang, C.-Y. Wang, L.-T. Chang, Y. Fan, T. Nie, M. Chan, W. Jiang, Y.-T. Chen, H.-J. Yang, H.-Y. Tuan, L.-J. Chen, K.L. Wang. Nano Lett. 13, 9, 4036 (2013)
  15. R.P. Panguluri, C. Zeng, H.H. Weitering, J.M. Sullivan, S.C. Erwin, B. Nadgorny. Physica Status Solidi B 242, 8, R67 (2005). https://doi.org/10.1002/pssb.200510030
  16. A. Spiesser, H. Saito, R. Jansen, S. Yuasa, K. Ando. Phys. Rev. B 90, 20, 205213 (2014). https://doi.org/10.1103/PhysRevB.90.205213
  17. A. Berche, J.C. Tedenac, P. Jund. Intermetallics 47, 23 (2014). https://doi.org/10.1016/j.intermet.2013.12.009
  18. R.C. de Oliveira, D. Demaille, N. Casaretto, Y.J. Zheng, M. Marangolo, D.H. Mosca, J. Varalda. J. Magn. Magn. Mater. 539, 168325 (2021). https://doi.org/10.1016/j.jmmm.2021.168325
  19. D.D. Dung, D. Odkhuu, L.T. Vinh, S.C. Hong, S. Cho. J. Appl Phys. 114, 7, 073906 (2013). https://doi.org/10.1063/1.4817372
  20. M. Petit, L. Michez, C.-E. Dutoit, S. Bertaina, V.O. Dolocan, V. Heresanu, M. Stoffel, V.L. Thanh. Thin Solid Films 589, 427 (2015)
  21. A. Spiesser, V.L. Thanh, S. Bertaina, L.A. Michez. Appl. Phys. Lett. 99, 12, 121904 (2011)
  22. B.T. Yasasun, A.C. Onel, I.G. Aykac, M.A. Gulgun, L.C. Arslan. J. Magn. Magn. Mater. 473, 348 (2019).
  23. I. Yakovlev, I. Tarasov, A. Lukyanenko, M. Rautskii, L. Solovyov, A. Sukhachev, M. Volochaev, D. Efimov, A. Goikhman, I. Bondarev, S. Varnakov, S. Ovchinnikov, N. Volkov, A. Tarasov. Nanomater. 12, 24, 4365 (2022). https://doi.org/10.3390/nano12244365
  24. A.S. Tarasov, S.V. Komogortsev, A.V. Lukyanenko, I.A. Yakovlev, I.A. Tarasov, A.L. Sukhachev, M.V. Rautskii, L.A. Solovyov, T.A. Andryushchenko, I.A. Bondarev, S.N. Varnakov, N.V. Volkov. J. Mater. Sci. 59, 21, 9423 (2024). https://doi.org/10.1007/s10853-024-09755-6
  25. M.V. Rautskii, A.V. Lukyanenko, S.V. Komogortsev, I.A. Sobolev, L.V. Shanidze, I.A. Bondarev, M.A. Bondarev, E.V. Eremin, I.A. Yakovlev, A.L. Sukhachev, M.S. Molokeev, L.A. Solovjov, S.N. Varnakov, S.G. Ovchinnikov, N.V. Volkov, A.S. Tarasov. Physics of Metals and Metallography, 2024, Vol. 125, No. 12, pp. 1327--1336. DOI: 10.1134/S0031918X24601975
  26. A.S. Tarasov, A.V. Lukyanenko, I.A. Tarasov, I.A. Bondarev, T.E. Smolyarova, N.N. Kosyrev, V.A. Komarov, I.A. Yakovlev, M.N. Volochaev, L.A. Solovyov, A.A. Shemukhin, S.N. Varnakov, S.G. Ovchinnikov, G.S. Patrin, N.V. Volkov. Thin Solid Films 642, 20 (2017). https://doi.org/10.1016/j.tsf.2017.09.025
  27. I.A. Tarasov, M.A. Visotin, T.V. Kuznetzova, A.S. Aleksandrovsky, L.A. Solovyov, A.A. Kuzubov, K.M. Nikolaeva, A.S. Fedorov, A.S. Tarasov, F.N. Tomilin, M.N. Volochaev, I.A. Yakovlev, T.E. Smolyarova, A.A. Ivanenko, V.I. Pryahina, A.A. Esin, Y.M. Yarmoshenko, V.Ya. Shur, S.N. Varnakov, S.G. Ovchinnikov. J. Mater. Sci. 53, 10, 7571 (2018). https://doi.org/10.1007/s10853-018-2105-y
  28. A.S. Tarasov, A.V. Lukyanenko, I.A. Yakovlev, I.A. Tarasov, I.A. Bondarev, A.L. Sukhachev, L.V. Shanidze, D.A. Smolyakov, S.N. Varnakov, S.G. Ovchinnikov, N.V. Volkov. Bull. Russ. Acad. Sci.: Phys. 87, Suppl. 1, S127 (2023)
  29. I.A. Yakovlev. State reg. software for computers 2018611121. A program for calculating electron diffraction patterns from a cubic crystal (2017)
  30. N.P. Lyakishev. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem: spravochnik v 3 t. Mashinostroenie, M. (1997). (in Russian)
  31. A. Ichimiya, P.I. Cohen. Reflection high-energy electron diffraction. University Press, Cambridge, UK (2004). 353 p
  32. D. Necas, P. Klapetek. Ultramicroscopy 124, 13 (2013). https://doi.org/10.1016/j.ultramic.2012.08.002

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru