Physics of the Solid State
Volumes and Issues
Bragg resonance in the system of layers of plasmonic Bi nanoparticles in GaAs matrix
Polenok E. D.1,2, Bert N.A.2, Ivanov A. A. 2, Preobrazhenskii V. V. 3, Putyato M.A. 3, Semyagin B.R. 3, Snigirev L.A.2, Ushanov V.I.2, Yagovkina M.A.2, Chaldyshev V.V.2
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: polenok.ed@edu.spbstu.ru, aleksei98.ivanov@mail.ioffe.ru, pvv@isp.nsc.ru, puma@isp.nsc.ru, sbr@isp.nsc.ru

PDF
We have experimentally studied the optical properties of a structure that consists of a periodical system of quasi-two-dimensional layers of plasmonic bismuth nanoparticles embedded into the crystalline matrix of gallium arsenide. By using methods of transmission electron microscopy and X-ray diffraction, the spatial distribution of plasmonic nanoparticles was experimentally studied, and their characteristic size and concentration were determined. The transfer matrix method was used for modelling the optical reflection spectra. Geometric parameters of the model were determined on the base of the structural data. Optical response of the separate bismuth nanoparticles was calculated in terms of the Mie theory. The developed model quantitatively describes all the significant peculiarities of the experimental optical reflection spectra. Keywords: non-stoichiometric GaAs, Bi nanoinclusions, localized surface plasmon resonance, Bragg diffraction, optical reflection.
  1. S.A. Maier. Plasmonics: fundamentals and applications. Springer, NY (2007)
  2. L. Wang, M. Hasanzadeh Kafshgari, M. Meunier. Adv. Funct. Mater. 30, 51, 2005400 (2020)
  3. N. Rivera, I. Kaminer. Nat. Rev. Phys. 2, 10, 538-561. (2020)
  4. A.N. Koya, M. Romanelli, J. Kuttruff, N. Henriksson, A. Stefancu, G. Grinblat, A. De Andres, F. Schnur, M. Vanzan, M. Marsili, M. Rahaman, A.V. Rodri guez, T. Tapani, H. Lin, B.D. Dana, J. Lin, G. Barbillon, R.P. Zaccaria, D. Brida, D. Jariwala, L. Veisz, E. Cortes, S. Corni, D. Garoli, N. Maccaferri. Appl. Phys. Rev. 10, 2, 021318 (2023)
  5. V.E. Babicheva. Nanomaterials 13, 7, 1270 (2023)
  6. B.P. Nanda, P. Rani, P. Paul, R. Bhatia. J. Pharm. Anal. (2024). In print https://doi.org/10.1016/j.jpha.2024.02.013
  7. A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne. J. Am. Chem. Soc. 127, 7, 2264 (2005)
  8. P. Mandal. Plasmonics 17, 3, 1247 (2022)
  9. I. Ibrahim Zamkoye, B. Lucas, S. Vedraine. Nanomaterials 13, 15, 2209 (2023)
  10. M. Fleischmann, P.J. Hendra, A.J. McQuillan. Chem. Phys. Lett. 26, 2, 163 (1974)
  11. S. Bai, X. Ren, K.Obata,Y. Ito, K. Sugioka. 5, 10, 210121-1 (2022)
  12. Y. Wang, X. Xu, Y. Li, C. Li, X. Wang, J. Wu, Y. Li. Talanta. 269, 125432 (2024)
  13. S. Bogdanov, A. Boltasseva, V. Shalaev. Science, 364, 532--533 (2019)
  14. L. Agiotis, M. Meunier. Laser Photonics Rev. 16, 10, 2200076 (2022)
  15. R. Rajamanikandan, K. Sasikumar, S. Kosame, H. Ju. Nanomaterials 13, 2, 290 (2023)
  16. C. Zhang, C. Huang, M. Pu, J. Song, Z. Zhao, X. Wu, X. Luo. Sci. Rep. 7, 1, 5652 (2017)
  17. N.A. Toropov, I.A. Gladskikh, P.V. Gladskikh, A.N. Kosarev, V.V. Preobrazhenskii, M.A. Putyato, B.R. Semyagin, V.V. Chaldyshev, T.A. Vartanyan. J. Opt. Technol. 84, 7, 459 (2017)
  18. V.M. Silkin, S.V. Eremeev, V.I. Ushanov, V.V. Chaldyshev. Nanomaterials 13, 1355 (2023)
  19. V.I. Ushanov, S.V. Eremeev, V.M. Silkin, V.V. Chaldyshev. Nanomaterials 14, 167 (2024)
  20. V.I. Ushanov, S.V. Eremeev, V.M. Silkin, V.V. Chaldyshev. Nanomaterials 14, 109 (2024)
  21. V.I. Ushanov, V.V. Chaldyshev, V.V. Preobrazhensky, M.A. Putyato, B.R. Semyagin. FTP 47, 8, 1043 (2013). (in Russian)
  22. V.I. Ushanov, V.V. Chaldyshev, V.V. Preobrazhensky, M.A. Putyato, B.R. Semyagin. FTP 50, 12, 1620 (2016). (in Russian)
  23. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, Peng Wei, F. Schiettekatte. Appl. Phys. Lett. 82, 14, 2245 (2003)
  24. E.D. Polenok, N.A. Bert, A.A. Ivanov, L.A. Snigirev, V.I. Ushanov, V.V. Preobrazhensky, M.A. Putyato, B.R. Semyagin, M.A. Yagovkina, V.V. Chaldyshev. FTT 66, 9, 1514 (2024). (in Russian)
  25. S. Adachi. John Wiley \& Sons, NY (2009)
  26. B.N.J. Persson, A. Liebsch. Phys. Rev. B 28, 8, 4247 (1983)
  27. Y. Merle d'Aubigne, A. Wasiela, H. Mariette, T. Dietl. Phys. Rev. B 54, 14003 (1996)
  28. L.C. Andreani, G. Panzarini, A.V. Kavokin, M.R. Vladimirova. Phys. Rev. B 57, 4670 (1998)
  29. J.P. Prineas, C. Cao, M. Yildirim, W. Johnston, M. Reddy. J. Appl. Phys. 100, 063101 (2006). https://doi.org/10.1063/1.2234814
  30. A.A. Ivanov, V.V. Chaldyshev, V.I. Ushanov, E.E. Zavarin, A.V. Sakharov, W.V. Lundin, A.F. Tsatsulnikov. Appl. Phys. Lett. 121, 4, 1101 (2022).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru