Kochukov Yu. A. 1,2, Kharitonova P. D. 1, Seleznev D. N.1, Gubina K.A. 1,2, Tereshchenko D. P.1, Khokhlov N. А.3, Barkanova Е. S. 3, Papashvili A. G.1, Shukshin V. Е. 1, Voronina I. S.1, Smetanin S.N. 1,2
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2National University of Science and Technology MISiS, Moscow, Russia
3Mendeleev University of Chemical Technology, Moscow, Russia
Email: ko4ukovura@yandex.ru, polincharik@ya.ru, seleznev_denis.n@mail.ru, axiniy@list.ru, tereshenko.mitya2018@yandex.ru, n_khokhlov96@mail.ru, barkanova_ekaterina@bk.ru, alex@lst.gpi.ru, shukshinve@lst.gpi.ru, irina.voronina.78@list.ru, ssmetanin@bk.ru
A cavity method has been developed to provide a simple measurement of the Raman gain for various crystals. Formulas for processing experimental results are theoretically justified taking into account the pump pulse duration and the Gaussian beam profile. Under the action of a nanosecond laser with a wavelength of 1064 nm, the Raman gain was measured for a number of crystals: SrMoO4, Sr(MoO4)0.8(WO4)0.2, Sr0.86Ba0.14MoO4, Sr0.9Ba0.1MoO4 and LiNa5Mo9O30. For the well-known SrMoO4 Raman crystal, the result obtained is consistent with the literature data (5.6 cm/GW). For SrMoO4-based solid solutions, a decrease in the Raman gain compared to that for SrMoO4 correlates with an increase in the width of the vibrational mode line. For the first time, stimulated Raman scattering was obtained in Sr0.86Ba0.14MoO4, Sr0.9Ba0.1MoO4 and LiNa5Mo9O30 crystals with the comparable Raman gain of 2.4-2.5 cm/GW under pumping with a wavelength of 1064 nm. Keywords: Stimulated Raman scattering, Raman gain, optical cavity, generation threshold.
- T.T. Basiev, V.V. Osiko. Rus. Chem. Rev., 75 (10), 847 (2006). DOI: 10.1070/RC2006v075n10ABEH003626
- E.P. Perillo, J.W. Jarrett, Y.-L. Liu, A. Hassan, D.C. Fernee, J.R. Goldak, A. Bonteanu, D.J. Spence, H.-C. Yeh, A.K. Dunn. Light: Science \& Appl., 6, e17095 (2017). DOI: 10.1038/lsa.2017.95
- V.A. Lisinetskii, S.V. Rozhok, D.N. Bus'ko, R.V. Chulkov, A.S. Grabtchikov, V.A. Orlovich, T.T. Basiev, P.G. Zverev. Laser Phys. Lett., 2 (8), 396 (2005). DOI: 10.1002/lapl.200510007
- A. Sabella, D.J. Spence, R.P. Mildren. IEEE J. Quantum Electron., 51 (12), 1000108 (2015). DOI: 10.1109/JQE.2015.2503404
- A.Z. Grasyuk, S.V. Kurbasov, L.L. Losev, A.P. Lutsenko, A.A. Kaminskii, V.B. Semenov. Quantum Electron., 28 (2), 162 (1998). DOI: 10.1070/QE1998v028n02ABEH001162
- A.A. Kaminskii, H.J. Eichler, K. Ueda, N.V. Klassen, B.S. Redkin, L.E. Li, J. Findeisen, D. Jaque, J. Garcia-Sole, J. Fernandez, R. Balda. Appl. Opt., 38 (21), 4533 (1999). DOI: 10.1364/AO.38.004533
- A.A. Kaminskii, K. Ueda, H.J. Eichler, Y. Kuwano, H. Kouta, S.N. Bagaev, Th.H. Chyba, J.C. Barnes, G.M.A. Gad, T. Murai, J. Lu. Opt. Commun., 194, 201 (2001). DOI: 10.1016/S0030-4018(01)01274-3
- H.-L. Zhou, Q.-H. Zhang, B. Wang, X.-G. Xu, Zh.-P. Wang, X. Sun, F. Zhang, L.-S. Zhang, B.-A. Liu, X.-X. Chai. Chin. Phys. B, 24 (4), 044206 (2016). DOI: 10.1088/1674-1056/24/4/044206
- T.T. Basiev, P.G. Zverev, A.Ya. Karasik, V.V. Osiko, A.A. Sobol', D.S. Chinaev. J. Exp. Theor. Phys., 99, 934 (2004) DOI: 10.1134/1.1842874
- S.N. Smetanin, Opt. Spectrosc., 121 (3), 395 (2016). DOI: 10.1134/S0030400X1608021X
- S.N. Smetanin, M. Jeli nek, D.P. Tereshchenko, V. Kubev cek. Optics Express, 26 (18), 22637 (2018). DOI: 10.1364/OE.26.022637
- N. Bloembergen. Amer. J. Phys., 35 (11), 989 (1967). DOI: 10.1119/1.1973774
- V.G. Savitski, S. Reilly, A.J. Kemp. IEEE J. Quantum Electron., 49 (2), 218 (2013). DOI: 10.1109/JQE.2012.2237505
- T.T. Basiev, M.N. Basieva, A.V. Gavrilov, M.N. Ershkov, L.I. Ivleva, V.V. Osiko, S.N. Smetanin, A.V. Fedin. Quantum Electron., 40 (8), 710 (2010). DOI: 10.1070/QE2010v040n08ABEH014376
- V.A. Lisinetskii, A.S. Grabtchikov, P.A. Apanasevich, M. Schmitt, B. Kuschner, S. Schlu cker, V.A. Orlovich. J. Raman Spectrosc., 37 (1-3), 421 (2006). DOI: 10.1002/jrs.1447
- O. Kitzler, A. McKay, D.J. Spence, R.P. Mildren. Optics Express, 23 (7), 8590 (2015). DOI: 10.1364/OE.23.008590
- L.V. Tarasov. Fisika protsessov v generatorakh kogerentnogo opticheskogo izluchenia (Radio i svyaz, M., 1981), p. 354 (in Russian)
- A. Penzkofer, A. Laubereau, W. Kaiser. Prog. Quantum Electron., 6 (2), 55 (1979). DOI: 10.1016/0079-6727(79)90011-9
- A.A. Kaminskii, S.N. Bagaev, K. Ueda, K. Takaichi, H.J. Eichler. Crystallography Reports, 47 (4), 653 (2002). DOI: 10.1134/1.1496066
- H. Yu, Zh. Li, A.J. Lee, J. Li, H. Zhang, J. Wang, H.M. Pask, J.A. Piper, M. Jiang. Opt. Lett., 36 (4), 579 (2011). DOI: 10.1364/OL.36.000579
- M. Frank, S.N. Smetanin, M. Jeli nek, D. Vyhli dal, A.A. Kopalkin, V.E. Shukshin, L.I. Ivleva, P.G. Zverev, V. Kubev cek. Opt. Laser Technol., 111, 129 (2019). DOI: 10.1016/j.optlastec.2018.09.045
- S.N. Smetanin, D. P. Tereshchenko, A.G. Papashvili, E.V. Shashkov, E.A. Peganov, K.A. Gubina, V.E. Shukshin, S.A. Solokhin, M.N. Ershkov, E.E. Dunaeva, I.S. Voronina, L.I. Ivleva. Bull. Lebedev Physics Institute, 50 (suppl. 9), S984 (2023). DOI: 10.3103/S1068335623210108
- D.P. Tereshchenko, S.N. Smetanin, A.G. Papashvili, K.A. Gubina, Yu.A. Kochukov, S.A. Solokhin, M.N. Ershkov, E.V. Shashkov, V.E. Shukshin, L.I. Ivleva, E.E. Dunaeva, I.S. Voronina. Technical Physics, 69 (5), 1427 (2024). DOI: 10.1134/S1063784224040431
- T.T. Basiev, A.A. Sobol, Yu.K. Voronko, P.G. Zverev. Opt. Mater., 15, 205 (2000). DOI: 10.1016/S0925-3467(00)00037-9
- X. Du, Z. Gao, F. Liu, X. Guo, X. Wang, Y. Sun, X. Tao. CrystEngComm., 22, 7716 (2020). DOI: 10.1039/D0CE01129K
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.