Local angular spectrum of the disturbance of a monochromatic wave field
Lyakin D.V.1, Ryabuho V.P.1
1Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, Russia
Email: LDV-77@mail.ru

PDF
A theoretical study of the influence of the spatial position of an observation point on the angular spectrum of the disturbance of a scalar monochromatic light wave field which source has a finite linear aperture is carried out. The concept of a local angular spectrum of a wave field disturbance is introduced. It is shown that, in contrast to the angular spectrum classically defined in the infinite plane of the field cross-section, and which for this reason can be called the total angular spectrum of the wave field, the local angular spectrum of the wave field disturbance is different for different observation points and is determined by both the size and shape of the linear aperture of the source and the coordinates of the position of the observation point. The expressions for determining the local angular spectrum, the law of change of this spectrum during the propagation of an optical wave field in free space, the connection of the local angular spectrum of a separate disturbance with the total angular spectrum of the wave field are obtained. Keywords: angular spectrum, Fourier transform, spatial frequencies, scalar monochromatic wave field, extended light source.
  1. M. Born, E. Wolf. Principles of optics, 7th ed. (Cambridge University Press, Cambridge, 2005)
  2. J.W. Goodman. Introduction to Fourier optics, 2nd ed. (McGraw-Hill, NY., 1996)
  3. L. Mandel, E. Volf. Opticheskaya kogerentnost i kvantovaya optika (Nauka, Fizmatlit, M., 2000) (in Russian)
  4. S.M. Rytov, Yu.A. Kravtsov, V.I. Tatarsky. Vvedenie v statisticheskuyu radiofiziku. Chast 2. Sluchajnye polya, 2-e izd. (Nauka, M., 1978) (in Russian)
  5. S.A. Akhmanov, Yu.E. Dyakov, A.S. Chirkin. Statisticheskaya radiofizika i optika. Sluchaynye kolebaniya i volny v lineynykh sistemakh, 2-e izd. (Fizmatlit, M., 2010) (in Russian)
  6. G.R. Lokshin. Osnovy radiooptiki (ID Intellekt, Dolgoprudny, 2009) (in Russian)
  7. V.P. Ryabukho, D.V. Lyakin, A.A. Grebenyuk, S.S. Klykov. J. Opt., 15 (2), 025405 (2013). DOI: 10.1088/2040-8978/15/2/025405
  8. D.V. Lyakin, N.Yu. Mysina, V.P. Ryabukho. Opt. i spektr., 124 (3), 348 (2018) (in Russian). DOI: 10.21883/OS.2018.03.45657.199-17 [D.V. Lyakin, N.Yu. Mysina, V.P. Ryabukho. Opt. Spectrosc., 124 (3), 349 (2018). DOI: 10.1134/S0030400X18030165]
  9. V.P. Ryabukho, L.A. Maksimova, N.Yu. Mysina, D.V. Lyakin, P.V. Ryabukho. Opt. Spectrosc., 126 (2), 124 (2019). DOI: 10.1134/S0030400X19020218
  10. G.S. Kino, T.R. Corle. Confocal scanning optical microscopy and related imaging systems (Academic Press, San Diego, 1996). DOI: 10.1016/B978-0-12-408750-7.X5008-3
  11. Handbook of Optical Systems, ed. by H. Gross (Wiley-VCH Verlag GmbH, Weinheim, 2005). Vol. 2: Physical Image Formation. DOI: 10.1002/3527606688
  12. L. Novotny, B. Hecht. Osnovy nanooptiki (Fizmatlit, M., 2009) (in Russian)
  13. I. Abdulhalim. Ann. Phys., 524 (12), 787 (2012). DOI: 10.1002/andp.201200106
  14. Handbook of full-field optical coherence microscopy: technology and applications, ed. by A. Dubois, 1st ed. (Jenny Stanford Publishing, NY., 2016). DOI: 10.1201/9781315364889
  15. P. Lehmann, M. Kunne, T. Pahl. J. Phys. Photonics, 3 (1), 014006 (2021). DOI: 10.1088/2515-7647/abda15
  16. P. de Groot, X. Colona de Lega, R. Su, J. Coupland, R. Leach. Opt. Eng., 60 (10), 104106-1 (2021). DOI: 10.1117/1.OE.60.10.104106
  17. R. Su, J. Coupland, C. Sheppard, R. Leach. J. Opt. Soc. Am. A, 3 (2), A27 (2021). DOI: 10.1364/JOSAA.411929
  18. J.F. Restrepo, J. Garcia-Sucerquia. Appl. Opt., 50 (12), 1745 (2011). DOI: 10.1364/AO.50.001745
  19. X. Yu, J. Hong, C. Liu, M.K. Kim. Opt. Eng., 53 (11), 112306 (2014). DOI: 10.1117/1.OE.53.11.112306
  20. J. Martinez-Carranza, T. Kozacki. Opt. Express, 30 (18), 31898 (2022). DOI: 10.1364/OE.460279
  21. A. Pan, M. Zhou, Y. Zhang, J. Min, M. Lei, B. Yao. Opt. Commun., 430, 73 (2019). DOI: 10.1016/j.optcom.2018.08.035
  22. K. Matsushima, T. Shimobaba. Opt. Express, 17 (22), 19662 (2009). DOI: 10.1364/OE.17.019662
  23. K. Matsushima. Opt. Express, 18 (17), 18453 (2010). DOI: 10.1364/OE.18.018453
  24. T. Kozacki, K. Falaggis, M. Kujawinska. Appl. Opt., 51 (29), 7080 (2012). DOI: 10.1364/AO.51.007080
  25. T. Kozacki, K. Falaggis. Opt. Lett., 40 (14), 3420 (2015). DOI: 10.1364/OL.40.003420
  26. T. Kozacki, K. Falaggis. Appl. Opt., 55 (19), 5014 (2016). DOI: 10.1364/AO.55.005014
  27. W. Zhang, H. Zhang, K. Matsushima, G. Jin. Opt. Express, 29 (7), 10089 (2021). DOI: 10.1364/OE.419096
  28. R. Xu, M. Feng, Z. Chen, J. Yang, D. Han, J. Xie, F. Song. Opt. Lett., 47 (8), 1972 (2022). DOI: 10.1364/OL.454171
  29. J. Zhao. Opt. Express, 30 (23), 41492 (2022). DOI: 10.1364/OE.470800
  30. J. Lamberg, F. Zarrinkhat, A. Tamminen, J. Ala-Laurinaho, J. Rius, J. Romeu, E.E.M. Khaled, Z. Taylor. Opt. Express, 31 (26), 43583 (2023). DOI: 10.1364/OE.504786
  31. R. Heintzmann, L. Loetgering, F. Wechsler. Optica, 10 (11), 1407 (2023). DOI: 10.1364/OPTICA.497809
  32. N.V. Petrov, J.-B. Perraud, A. Chopard, J.-P. Guillet, O.A. Smolyanskaya, P. Mounaix. Opt. Lett., 45 (15), 4168 (2020). DOI: 10.1364/OL.397935
  33. J. Wang, Y. Wu, J. Wang, N. Chen. Opt. Las. Techn., 181 B, 111784 (2025). DOI: 10.1016/j.optlastec.2024.111784
  34. M.F. Picardi, A. Manjavacas, A.V. Zayats, F.J. Rodriguez-Fortuno. Phys. Rev. B, 95, 245416 (2017). DOI: 10.1103/PhysRevB.95.245416
  35. M. Baker, W. Liu, E. McLeod. Opt. Express, 29 (14), 22761 (2021). DOI: 10.1364/OE.431754
  36. J. Lamberg, F. Zarrinkhat, A. Tamminen, J. Ala-Laurinaho, J. Rius, J. Romeu, E.E.M. Khaled, Z. Taylor. Opt. Express, 31 (23), 38653 (2023). DOI: 10.1364/OE.504791
  37. M. Deng, M. Cotrufo, J. Wang, J. Dong, Z. Ruan, A. Al\`u, L. Chen. Nat. Commun., 15, 2237 (2024). DOI: 10.1038/s41467-024-46537-9
  38. L.M. Soroko. Osnovy golografii i kogerentnoy optiki (Nauka, M., 1971) (in Russian)
  39. S.M. Kozel, G.R. Lokshin. Opt. i spektr., 33 (1), 165 (1972) (in Russian)
  40. I.S. Klimenko, V.P. Ryabukho, B.V. Feduleev. ZhTF, 55 (5), 980 (1985) (in Russian)
  41. I.S. Klimenko, I.R. Sataev, V.P. Ryabukho, B.V. Feduleev. ZhTF, 58 (10), 1955 (1988) (in Russian)
  42. U. Vyas, D. Christensen. IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 59 (6), 1093 (2012). DOI: 10.1109/TUFFC.2012.2300
  43. C.B. Top. IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 68 (8), 2687 (2021). DOI: 10.1109/TUFFC.2021.3075367

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru