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Local angular spectrum of the disturbance of a monochromatic wave field
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A theoretical study of the influence of the spatial position of an observation point on the angular spectrum of

the disturbance of a scalar monochromatic light wave field which source has a finite linear aperture is carried out.

The concept of a local angular spectrum of a wave field disturbance is introduced. It is shown that, in contrast to

the angular spectrum classically defined in the infinite plane of the field cross-section, and which for this reason

can be called the total angular spectrum of the wave field, the local angular spectrum of the wave field disturbance

is different for different observation points and is determined by both the size and shape of the linear aperture of

the source and the coordinates of the position of the observation point. The expressions for determining the local

angular spectrum, the law of change of this spectrum during the propagation of an optical wave field in free space,

the connection of the local angular spectrum of a separate disturbance with the total angular spectrum of the wave

field are obtained.
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Introduction

One of the methods to study the properties of scalar

monochromatic wave fields in the optics, first of all the

features of their propagation in homogeneous and hetero-

geneous media, is the method of wave field presentation in

the form of integral decomposition by angular spectrum of

plane waves — spectrum of spatial harmonics [1–6]. The

concept of the angular spectrum of the wave field in the

optics is fundamental in definition of its spatial correlation

properties, both transverse [1,3–5] and longitudinal relative

to the field propagation direction [4,5,7–9]. The study

of the properties of statistically heterogeneous spatially

limited fields is of special interest, since the real sources

of light that we come across in the practice and that

have the finite linear dimensions of the aperture create

exactly such fields. In particular, the transformation of

spatially frequency and correlation properties of such fields

is interesting when they pass through the optical systems or

interact with the objects of complex stochastic structure,

and when images of such objects are generated [1,3,5],
for example, in microscopy [10–17], digital methods of

image restoration, such as digital optical holography [18–20]
and ptychography [21], at the numerical modeling of

electromagnetic fields propagation [22–31], in the methods

of phase recovery from the spatial distribution of wave

field intensity [32,33], int he study of light scattering by

micro- and nanoparticles [34–36], in design of meta-optic

elements [37].

There are two approaches to definition of the angular

spectrum of the scalar wave field. In the first approach,

being in fact a convenient mathematical representation, the

angular spectrum of monochromatic wave field is defined

via the Fourier transform of the spatial distribution of the

complex amplitude of this field disturbances in a certain

plane of observation, perpendicular to the axial direction of

the field propagation — optical axis [1–6]. The complex

amplitude angular spectrum of the monochromatic wave

field determined in this manner is the density of amplitude

distribution for the angular components — plane waves, into

which the wave field is decomposed, by transverse spatial

frequencies, which actually depend only on the angles of

propagation of these angular components.

Further we will call this approach in the definition of

the angular spectrum the classic one, and the angular

spectrum determined by the above method, — the full

angular spectrum of the wave field, since it is defined via

integration along all local disturbances of the wave field in

the infinite observation plane. The classic approach makes it

possible to describe the propagation of the monochromatic

wave field in the free space, and also to define the patterns

of such field diffraction in various fine amplitude or phase

random and determined screens.

A version of the classic definition of the monochromatic

wave field angular spectrum is its definition through the in-

verse Fourier transform of the transverse spatial correlation

function of the wave field [4,5]. In this case the angular

spectrum is the angular spectral power (intensity) density,

which is the middle square in the assembly of realizations

for the amplitude angular spectrum module.

Therefore, in any case in the classic representation the

angular spectrum of the wave field in virtue of its definition

via integration in the infinite plane of this field cross section

is its certain integral characteristic. For this reason and in
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virtue of the laws of conservation the module and width

of the full angular spectrum do not change when the wave

field propagates in free space from one plane of observation

to another [1–6].
The second approach in the definition of the angular

spectrum which is intuitive and proceeds from the natural

optic experiment, assumes that the angular spectrum of

the wave field is the angular distribution of the complex

amplitude (or intensity) of angular spatial harmonics (plane
waves), constituting this wave field in a certain point

of observation [7–9]. This approach may also be called

radiometric [3], since it may be reduced to consideration

of the energy propagation along the light beams, emitted

from quasi-zero-dimensional areas in the plane of the field

source and crossing in a certain field of observation.

This approach — the summation of the contributions

to the disturbance of the wave field in a certain point

of observation from the individual quasi-zero-dimensional

areas in the plane of the source, has historically been the

basis for solving the objectives of diffraction and methods

for determination and measurement of coherence in the

wave fields [1,3], which is clearly seen in transition from

Cartesian coordinates in the source plane to the related

angles of beam distribution (in transition to the angular

distribution of radiation from the source to the observation

point) [38]. In this approach the width of the angular

spectrum of the wave field in the point of observation

will mostly be determined by the combination of angles,

at which the light beams arrive from the source. This

combination of angles forms a solid angle, under which the

linear aperture of the source is seen from the observation

point, and determines the width of distribution by angles

of wave field intensity in the observation point. Since the

value of the solid angle depends on the position of its top,

which is located in the point of observation, the width of

the angular spectrum of wave field disturbance in this point

in the considered approach will depend on its position in

the space. The angular spectrum of wave field disturbance

determined in the considered manner will be called a local

angular spectrum of such disturbance.

The objective of this paper consists in combination of

two approaches in determination of the angular spectrum

of the scalar monochromatic wave field within a single

mathematical description based on Fourier transforms, es-

tablishment of the connection between the local and full

angular spectra and the law of change of the local angular

spectrum during propagation of the scalar monochromatic

wave field along the main direction of its propagation in the

free homogeneous and isotropic space.

1. Classic representations on angular
spectrum of monochromatic wave field

Spatial distribution of the complex amplitude U(x , y, z )
of monochromatic wave field disturbances in a certain

plane (XY ), perpendicular to the main direction of the
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Figure 1. Wave vector k of plane wave incident at angle θ to axis

Z, and its components in 3D space.

Z field propagation (crossing this axis in a certain point

with coordinate z = const), may be presented in the form

of a superposition of plane waves with various spatial

frequencies kx , ky and density of complex amplitude

distribution W (kx , ky , z ) of these waves in the considered

plane with the following expression [2,6]:

U(x , y, z ) =

+∞x

−∞

W (kx , ky , z ) exp{i(kx x + ky y)}dkx dky ,

(1)
where k = 2π/λ — wave number corresponding to wave-

length λ of monochromatic wave field; kx , ky and kz —
spatial frequencies — projections of wave vector k on axis

X , Y and Z accordingly, which may be expressed as follows:

kx = k cosα sin θ,

ky = k sinα sin θ,

kz =
√

k2 − k2
x − k2

y = k cos θ, (2)

where α and θ — angles that specify the direction of the

wave vector k in space (fig. 1): θ — angle between axis Z
and wave vector k (zenith angle), α — angle between axis

X and projection kxy of vector k on plane (XY ) (azimuthal

angle).
Hereinafter we will limit ourselves in the description of

the complex amplitude of monochromatic wave field dis-

turbances by the consideration of only homogeneous, non-

decaying, plane waves [3,4] and their impact at generation

of wave disturbances of the field in the area of the space

that is of interest for us.

In Fourier optics [2,6] the density of complex amplitude

distribution W (kx , ky , z ) is called the angular spectrum of

wave field (1) in a certain plane (XY ), since in the case of

the monochromatic field (at k = const) this value is actually

only the function of the propagation angles θ and α of the

plane waves.

A law [2,6] is known on the change of the angular

spectrum of the monochromatic wave field in the process of
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its propagation in the free homogeneous and isotropic space

from plane (4H), crossing the axis Z in a certain reference

point z = 0, to the observation plane (XY ) (z = const):

W (kx , ky , z ) = W0(kx , ky) exp
{

i
√

k2 − k2
x − k2

y z
}

= W0(kx , ky) exp{ikz z}, (3)

where W0(kx , ky) = W (kx , ky , z = 0) — angular spectrum

of the wave field in plane (4H). Expression (1) in this case

will look as follows

U(x , y, z ) =

+∞x

−∞

W (kx , ky ) exp{ikz z}

× exp{i(kx x + ky y)}dkxdky . (4)

Angular spectrum W0(kx , ky) of wave field in plane (4H)
is related by inverse Fourier transform with spatial distribu-

tion U0(ξ, η) of complex amplitude of monochromatic wave

field disturbances in this plane [2,6]:

W0(kx , ky ) =

+∞x

−∞

U0(ξ, η) exp{−i(kxξ + kyη)}dξdη. (5)

Plane (4H), corresponding to z = 0, shall be deemed

to be the plane of the wave field disturbances source for

all other planes with z > 0. To determine the angular

spectrum W0(kx , ky) of the wave field in the plane z = 0,

spatial distributions of amplitude A0(ξ, η) and phase ϕ(ξ, η)
of wave disturbances of this field in the considered plane

are deemed to be known (including the statistics of these

values determining the spatial correlation properties of the

wave field in the source plane [4,5]):

U0(ξ, η) = A0(ξ, η) exp{iϕ(ξ, η)}.

Integration in (5) is carried out in all points of the

plane (4H), however, in practice the sources of the wave

fields (both primary and secondary) have limited transverse

spatial dimensions. For this reason the complex amplitude

U0(ξ, η) in the source plane (4H) may be deemed the finite

function, i. e. different from zero only in a certain limited

area 6 of this plane:






U0(ξ, η) 6= 0 at (ξ, η) ∈ 6,

U0(ξ, η) = 0 at (ξ, η) /∈ 6.
(6)

Considering (6) the expression (5) may be rewritten as

follows:

W06(kx , ky ) =
x

6

U0(ξ, η) exp{−i(kxξ + kyη)}dξdη (7)

or as

W06(kx , ky)=

+∞x

−∞

U0(ξ, η)t6(ξ, η) exp{−i(kxξ+kyη)}dξdη,

(8)

where t6(ξ, η) — amplitude aperture function:

t6(ξ, η) =







1 at (ξ, η) ∈ 6,

0 at (ξ, η) /∈ 6.
(9)

Expression (8), according to the inverse convolution

theorem may be written in the form of angular spec-

trum convolution W0(kx , ky ) of wave field U0(ξ, η) and

angular spectrum T6(kx , ky) of linear aperture of the field

source [2,6]:

W06(kx , ky) = W0(kx , ky ) ⊗ T6(kx , ky), (10)

where

T6(kx , ky ) =

+∞x

−∞

t6(ξ, η) exp{−i(kxξ + kyη)}dξdη.

Expression (10) shows [2,6] increase in the width of

the wave field angular spectrum in the source plane (and
directly in all other planes z > 0 of free space) with the

reduction of transverse dimensions of the source and is

a mathematical description of the wave field diffraction

phenomenn at the hole in the nontransparent screen.

Therefore, the complete angular spectrum of monochro-

matic wave field disturbances in the source plane (z = 0)
is determined by both spatial distributions of amplitude

A0(ξ, η) and phase ϕ(ξ, η) of wave disturbances and

statistics of these values in the considered plane, as well as

the dimensions of area 6 — transverse dimensions (linear
aperture) of the source. The complete angular spectrum of

the wave field in the source plane is a complex value in the

general case:

W06(kx , ky) = |W06(kx , ky)| exp{i806(kx , ky)},

where 806(kx , ky) = arg(W06(kx , ky)) — initial phase of

angular component of the field with spatial frequencies

kx , ky . This initial phase is formed by all points (ξ, η)
of the source aperture 6. Besides, depending on the

characteristics of the source (distributions A0(ξ, η) and

ϕ(ξ, η), dimensions and shape of the aperture 6) such

distribution of initial phases may be formed for 806(kx , ky )
angular components of monochromatic wave field, that

these angular components will come to a certain point of

observation (x , y, z ) in the phase, which will focus the field

in the area around with point with maximum of disturbances

amplitude in it. Therefore, representation of the wave field

in the form of a plane wave spectrum does not prevent the

cases of such field focusing.

Expression (3) relates to each other the angular spectra

of the wave field in the source plane (z = 0) and random

observation plane z > 0 and shows that in process of

wave field distribution in the free space the complete

angular spectrum of the field will not change in its cross

sections, and only phase incursions change between the

plane waves — angular components of the considered wave

field [2,6].
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However, the photodectors that exist in the nature or in

the engineering have the finite physical dimensions of the

reception aperture and for this reason may only cover the

limit area of the plane [22–31], where the angular spectrum

of the wave field is determined. Within the limit this limited

area may be pulled together in a dot. It is evident that in this

situation the angular spectrum of wave field disturbances,

”
perceived“ with a small-size receiver, may differ from the

complete angular spectrum of the wave field. The cause for

such difference as shown below are the finite dimensions of

the real wave field sources.

2. Angular spectrum of disturance of
monochromatic wave field in a certain
observation point

At the finite linear aperture 6 of the monochromatic wave

field source the propagation of angular components of this

field in space z > 0 has, according to (10), the diffraction

nature: each of the angular components acquires its own

propagation angles α and θ, amplitude |W06(kx , ky ))| and
initial phase 806(kx , ky) = arg(W06(kx , ky )) with account

of the impact of this aperture dimensions and shape.

Besides, the angular components of the field will have the

wave fronts limited in transverse dimensions by projections

of the linear aperture 6 of the source on the plane,

perpendicular to the direction of propagation of each angular

component. Therefore, the amplitude of the wave field

angular components is zero outside these projections. Each

of such angular components of the wave field will have the

finite area of crossing 6′ with the selected observation plane,

perpendicular to the main direction of this field propagation.

When the wave field spreads in the free space, its

diffraction broadening occurs — angular components of

the field spreading at different angles θ to axis Z, are

spatially separated (diverge) the further they are from the

source plane. This results in the fact that the areas of

crossing 6′ of aperture-limited angular components of the

wave field with the observation plane will be imposed upon

each other differently depending on the selection of this

plane. As a result — not all angular components of the

considered wave field may arrive to a certain dedicated

limited area in the observation plane (limit case of such

area — dot). This effect is especially noticeable for a spatilly

periodical wave field with the discrete angular spectrum.

The example of such field may be the propagation of the

monochromatic wave field disturbances in the free space,

its source being the sinusoid amplitude diffraction lattice,

illuminated with a plane wave of monochromatic color and

covered with a screen that has a hole to determine size D
of this secondary source — linear aperture 6 of diffraction

lattice (fig. 2).

For clarity we will consider the unidimensional transverse

distribution of complex wave field disturbances amplitude

MPW Z

δθ
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θ2
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Figure 2. Angular components of the wave field of sinusoid

amplitude diffraction lattice ASG with the finite linear aperture

6 when illuminated by monochromatic plane wave (MPW). For
details see the text.

that in the plane of the source (z = 0) is [6]

U0(ξ) = 1 + q cos

(

2π

d
ξ

)

, (11)

where d — spatial period of the diffraction lattice, q < 1 —
depth of amplitude modulation of the field with the lattice.

Field amplitude A0(ξ) (11) varies in accordance with the

cosinusoid law, and phase ϕ(ξ, η) = const = 0. Without

account of the finite dimensions of the lattice linear aperture

the field (11) may be presented as the sum of complex

amplitudes of three plane waves:

U0(ξ) = U00(ξ) + U01(ξ) + U02(ξ)

= 1 +
q
2
exp

{

−i
2π

d
ξ

}

+
q
2
exp

{

+i
2π

d
ξ

}

. (12)

For plane wave U00(ξ) of single amplitude the angle of

propagation θ0 relative to axis Z is equal to zero, and for

plane waves U01(ξ) and U02(ξ) with amplitudes q/2 the

angles of propagation are equal to accordingly θ1 = −θ and

θ2 = +θ, where

θ = arcsin{λ/d}. (13)

Taking into account of the dimensions D of linear

aperture of the lattice, the full angular spectrum of the wave

field of the considered source may be defined using (7) as

W06(kx) = D
sin

(

kx
D
2

)

kx
D
2

+ D
q
2

sin
(

(

kx + 2π
d

)

D
2

)

(

kx + 2π
d

)

D
2

+ D
q
2

sin
(

(

kx − 2π
d

)

D
2

)

(

kx − 2π
d

)

D
2

. (14)
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According to (14), sinusoidal amplitude diffraction grat-

ing with linear aperture of finite dimensions D, illuminated

with a plane wave of monochromatic light creates a wave

field in the form of three beams (fig. 2), propagating at

angles θ0, θ1 and θ2 to axis Z and having angular divergence,

determined by angle 2δθ, where

δθ = arcsin{λ/D} ≈ λ/D. (15)

In fig. 2 the areas of space occupied by each of these light

beams separately are shown with light grey color; areas

where two beams cross — with a darker (medium) grey

tone, and the area where all three beams cross is shown

with a dark grey tone. Accordingly, the areas where the

wave field is absent, are shown with white background.

The simple geometric assumptions may be used to find

a coordinate z 0 of plane ((X4Y4) in fig. 2), where one can

deem that these three beams stop crossing each other,

z 0 ≈ D
cos(θ − δθ) cos(δθ)

sin θ
. (16)

Dimensions D of the linear aperture of the grating

determine the divergence of beams, making the wave field

in question: the larger D, the smaller the divergence angle

2δθ (according to (15)), and the stronger the wave fronts of

these beams approach the plane ones.

Therefore, at D ≫ λ one may approximately assume

that the wave field of the amplitude diffraction grating is

a sum of three quasiplane aperture-limited waves, which

at z > z 0 do not cross each other. Besides, the full

angular spectrum of such wave field disturbances in each

of the transverse planes ((X1Y1), (X2Y2), (X3Y3), fig. 2)
remains same and consists of three angular components

(see expression (12)) — quasiplane waves propagating

at angles θ0, θ1 and θ2 to axis Z. However, for the

observers located in the points with the identical transverse

coordinates (x , y) in these planes (points 1, 2 and 3

in fig. 2) or different points of one plane (points 2, 4 or

points 3, 5, 6, 7 and 8 in fig. 2), the angular spectrum of wave

field disturbances in the selected point of observation (local
angular spectrum) will be limited only by those angular

components of the field that pass through this point. Thus,

the point 1 (dark-grey area) will be passed by all three

angular components of the wave field with propagation

angles θ0, θ1 and θ2 . The points 2 and 5 (medium-grey

areas) will be passed by two components with propagation

angles θ0 and θ2 . The points 4 and 6, point 3 and

point 7 (in the light-grey areas) will be passed only by one

angular component with propagation angles θ2, θ0, and θ1
accordingly. And the points 8 and 9 (white background)
will not be passed by any angular component of the wave

field in question.

Modeling using formula (16) shows that at D > 5λ the

dependence of value z 0 on D becomes linear, i. e. at

D → ∞ value z 0 also goes to infinity. Besides, linear

apertures of wave fronts in angular components of the total

wave field also tend towards infinite dimensions, which in

 

MPW Z

Σ

(XY )(ΞH )

1

2

3S

Figure 3. Field of quasi-point source of light in the form of quasi-

Lambertian diffuser S with small aperture 6, illuminated with a

plane monochromatic wave MPW, and body angles determining

local angular spectra in three different points of space 1, 2 and 3.

For details see the text.

the end results in the fact that any observation point will

be passed by all angular components of the wave field, and

local angular spectra for all the observation points will be

same and equal to the full angular spectrum of the wave

field.

Therefore, the cause for the difference in the local angular

spectra of wave field disturbances in various spatial points

of observation from each other and from the full angular

spectrum of the wave field is the finite linear aperture of

the source of this wave field.

Another indicative example of the difference in the local

angular spectrum of wave field disturbance in a certain

point of observation from the full angular spectrum is the

field of quasi-point (D → λ) monochromatic source of light

emitting practically evenly into the entire half-space z > 0

(2δθ → π) (fig. 3, for simplicity a 2D case is considered; the

area of the space occupied by the wave field is shown with

grey color). From fig. 3 you can see that at extremely wide

full angular spectrum of the wave field of such source the

local angular spectrum of this field disturbances in any point

of observation is very narrow, actually consisting of only one

angular component with spatial frequency corresponding to

the direction from this source to observation point.

3. Expression for local angular spectrum

To determine the local angular spectrum of the wave

field in a certain point of observation (x , y, z > 0), an

expression is necessary, which binds the complex amplitude

U(k, x , y, z ) of the wave field in the considered point with

the distribution of the complex amplitude U0(ξ, η) of this

wave field in the plane of source (z = 0). Such binding

is provided by Green’s formula [1,3,6], which with account

of the finiteness of the linear aperture dimensions 6 of the

field source may be written as in (7) and (8) in the following

76 Optics and Spectroscopy, 2024, Vol. 132, No. 12



1202 D.V. Lyakin, V.P. Ryabuho

form

U(k, x , y, z ) = − 1

2π

x

6

U0(ξ, η)
d

dz

(

exp{ikR}
R

)

dξdη

= − 1

2π

+∞x

−∞

U0(ξ, η)t6(ξ, η)
d

dz

(

exp{ikR}
R

)

dξdη,

(17)

where

R =
√

(x − ξ)2 + (y − η)2 + z 2,

and t6(ξ, η) — amplitude aperture function determined

by (9). Provided that R ≫ λ (asymptotic approxima-

tion) [1,3,6]

d
dz

(

exp{ikR}
R

)

=

(

ik − 1

R

)

exp{ikR}
R

cos θL

≈ ik
exp{ikR}

R
cos θL, (18)

where θL = θL(x , y, z ; ξ, η) — angle between the normal

line to infinitely small emitting site dξdη (with center in

point S(ξ, η)) of the source plane and the direction towards

the observation point P(x , y, z ), i. e. angle between axis

Z and radius-vector R, connecting the points S(ξ, η) and

P(x , y, z ) (or between axis Z and wave vector k, since

vectors R and k — are collinear (fig. 4)),

cos θL =
z
R

=
z

√

(x − ξ)2 + (y − η)2 + z 2
. (19)

When substituting (18) in (17) the Green’s formula

starts looking like Fresnel−Kirchhoff expression serving as

the mathematical representation of the Huygens−Fresnel

Σ

S ξ, η)(

Ξ

H

α

γ
ρ

r

R

Y
Z

0

z

P(x, y)

α

θ θ

X

kxy

kz

k

Figure 4. To definition of the local angular spectrum of

disturbances of the monochromatic wave field of source with finite

linear aperture 6, located in plane (4H), in certain point of

observation P(x, y, z ). For details see the text.

principle [6],

U(k, x , y, z ) =
1

iλ

x

6

U0(ξ, η)
exp{ikR}

R
cos θLdξdη

=
1

iλ

+∞x

−∞

U0(ξ, η)t6(ξ, η)
exp{ikR}

R
cos θLdξdη, (20)

where the complex amplitude of the spherical wave propa-

gating from the point source in point S(ξ, η) of the source

plane (infinitely small emitting site dξdη with the center in

this point) and reaching the point of observation P(x , y, z ),

depends not only on the complex amplitude U0(ξ, η) of

wave field disturbances in point S(ξ, η) and distance R
between points S(ξ, η) and P(x , y, z ), but on the area

of elemental emitter dξdη cos θL seen from the point of

observation P(x , y, z ). The last circumstance means that

the points of observation are exposed only to some energy

of the considered spherical wave (some energy emitted by

the elemental site dξdη). Besides, for the fixed point of

observation P(x , y, z ) each point S(ξ, η) of the source has

the only angle θL assigned. Therefore, the combination of

angles θL from all points S(ξ, η) of aperture 6 in the source

forms the body angle, at which this aperture is seen from

the point of observation P(x , y, z ).

Expression (19) may be transformed to

cos θL =
z

√

x2+y2+z 2+ξ2+η2−2
√

x2+y2
√

ξ2+η2 cosϕ

,

(21)
where ϕ — angle between radii-vectors r(x , y) and

ρ(ξ, η) (fig. 4),

ϕ = arccos

(

x
√

x2 + y2

)

+ γ = arcsin

(

y
√

x2 + y2

)

+ γ,

(22)

γ — angle between axis 4 and radius-vector ρ(ξ, η) (fig. 4).

With account of (22) the expression (21) is transformed

to

cos θL =
z

√

x2+y2+z 2+ρ2−2ρ[x cos γ−y sin γ]
, (23)

where ρ = (ξ2 + η2)1/2.

From the formal point of view one can assume that

for any geometric form of the linear aperture 6 of the

wave field source the angle γ changes in the range from 0

to 2π, and value ρ for each angle γ varies within ρmin(γ)
- ρmax(γ). For example, for the aperture in the form of a

circle with diameter D ρmin(γ) = 0 and ρmax(γ) = D/2 for

all γ (hereinafter axis Z is assumed to be passing through

the geometric center of the aperture). For the rectangular

aperture with sides a and b (along axes 4 and H , fig. 5)
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Figure 5. To definition of value ρmax(γ) for rectangular linear

aperture of the source. For details see the text.
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ρ
(γ
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a

m
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γ/π

Figure 6. Values ρmax(γ) normalized to length of side a
for sources with linear aperture of rectangular (b = 3a , solid line)
and square (b = a , dashed line) form.

ρmin(γ) = 0 for all γ , and ρmax(γ) is defined as follows:

ρmax(γ)=































a
2 cos γ

at 0≤γ≤γ1 at (2π−γ1) < γ ≤ 2π,

b
2 sin γ

at γ1 < γ ≤ (π − γ1),

−a
2 cos γ

at (π − γ1) < γ ≤ (π + γ1),

−b
2 sin γ

at (π + γ1) < γ ≤ (2π − γ1),

where

γ1 = arcsin

(

b√
a2 + b2

)

.

Fig. 6 shows the curves of dependence for the value

ρmax(γ) normalized by value a for the rectangular (b = 3a ,
solid line) and square (b = a , dashed line) apertures of the

wave field source.

It is evident that in virtue of the finiteness of the

dimensions of linear aperture 6 for the source of the wave

field the range of variation of angles θL for each angle γ

will be finite. This range, based on expression (23), is

determined as follows:















































































min{θ1(γ), θ2(γ)}≤θL(γ) ≤ max{θ1(γ), θ2(γ)}, at

θ1(γ)=arctan

(

z√
x2+y2+z 2+ρ2

min
(γ)−2ρmin(γ)[x cos γ−y sin γ ]

)

= arctan

(√
x2+y2+ρ2

min
(γ)−2ρmin(γ)[x cos γ−y sin γ ]

z

)

,

θ2(γ)=arccos

(

z√
x2+y2+z 2+ρ2max(γ)−2ρmax(γ)[x cos γ−y sin γ ]

)

= arctan

(√
x2+y2+ρ2max(γ)−2ρmax(γ)[x cos γ−y sin γ ]

z

)

,

0 ≤ γ ≤ 2π,

(24)

where ρmin(γ) and ρmax(γ) are determined for each angle

γ by geometric shape of linear aperture 6 of the source

of wave field, and functions min and max determine the

minimum and maximum values of two values θ1(γ) and

θ2(γ).

For instance, for the previously considered unidimen-

sional (y = 0) case of transverse distribution of the complex

amplitude of wave field disturbances developed by the

amplitude diffraction grating with the finite linear aperture,

angle γ actually takes only two values: γ = 0 and γ = π

and ρmin(γ) = 0 and ρmax(γ) = D/2 for these two values of

angle γ . Ranges of angles variation θL(γ) for a certain point

of observation (x , z ), according to expression (24), will be

determined by the following inequalities:











arctan
(

x−D/2
z

)

≤ θL(x , z ) ≤ arctan
(

x
z

)

, at γ = 0,

arctan
(

x
z

)

< θL(x , z ) ≤ arctan
(

x+D/2
z

)

, at γ = π.

(25)

To determine the transverse spatial frequencies kx , ky

of angular components in the 3D wave field, which may

potentially pass through the point of observation (x , y, z ),

it is necessary, according to (2), apart from the zenith

angle value θL to determine the value of the azimuthal

angle αL for each of these components. Since the wave

vector k of each of these angular components is collinear

to the radius-vector R, connecting a certain point S(ξ, η)

of the source with the point of observation P(x , y, z ), in

this case each zenith angle θL will have the only matching

azimuthal angle αL. I.e. each point of the source has the

only matching pair of transverse spatial frequencies kx , ky

of the angular component of the wave field and accordingly

the only angular component, which may potentially pass

through the fixed point of observation [3].

The connection of the azimuthal angle αL with γ and

ρ(γ) may be found from geometrical constructions and is
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Figure 7. The reduced values of the zenith angle (a) and the

corresponding reduced value of the azimuthal angle (b) of

the angular components of the monochromatic wave field in

the source with aperture of rectangular shape a × b (b = 3a)
at ρ(γ) = ρmin(γ) (dashed line) and ρ(γ) = ρmax(γ) (solid line)
for the point of observation with coordinates x = 0.2a , y = 0.4a ,
z = a .

determined by expression

αL(γ)=arccos
x−ρ(γ) cos γ

√

x2+y2+ρ2(γ)−2ρ(γ)[x cos γ−y sin γ]

= arcsin
y−ρ(γ) sin γ

√

x2+y2+ρ2(γ)−2ρ(γ)[x cos γ − y sin γ]
.

(26)

Fig. 7 shows as an example the curves of the reduced

values of the zenith angle θL(γ)/π (fig. 7, a) and curves of

the corresponding reduced values of the azimuthal angle

αL(γ)/π (fig. 7, b) of the angular components of the

monochromatic wave field of the source with the aperture

of rectangular shape a × b (b = 3a) at ρ(γ) = ρmin(γ)

(dashed line) and ρ(γ) = ρmax(γ) (solid line) for the point

of observation with coordinates x = 0.2a , y = 0.4a , z = a .
Fig. 7, a shows that the values of angles θL(γ) at ρmin(γ)

and ρmax(γ) may correlate to each other in a different

way depending on angle γ , which finds reflection in

condition (24). As fig. 7, b shows, a similar situation is

true for angle αL(γ).

Taking into account the relation determined by expres-

sion (8) between the aperture-limited complex amplitude

U0(ξ, η)t6(ξ, η) of the field in the plane of the source and

the full angular spectrum W06(kx , ky ) of the wave field

in this plane and applying the inverse Fourier transform,

expression (20) is transformed as follows when this complex

amplitude is substituted

U(k, x , y, z ) =

+∞x

−∞

W06(kx , ky)

(

1

iλ

+∞x

−∞

exp{i(kxξ + kyη)}

× exp{ikR}
R

cos θLdξdη

)

dkxdky .

(27)
When substituting

kR = k̃z z + k̃x(x − ξ) + k̃y(y − η),

where sign
”
tilde“ means dependence of values on pairs of

angles (θL(γ);αL(γ)), expression (27) can be also written

as follows:

U(x , y, z ) =

+∞x

−∞

W06(kx , ky)P(kx , ky ; x , y, z )

× exp{ikz z} exp{i(kx x + ky y)}dkxdky , (28)

where

P(kx , ky ; x , y, z )=
1

iλ

+∞x

−∞

cos θL

R
δ(k̃x −kx , k̃y −ky , k̃z −kz )

× exp{−i[(k̃x − kx )ξ + (k̃y − ky)η]}

× exp{i[(k̃z − kz )z + (k̃x − kx )x + (k̃y −ky)y ]}dξdη.

Function P(kx , ky ; x , y, z ) plays the role of the limiting

aperture function for the angular spectrum W06(kx , ky )
of the monochromatic wave field in the plane of source

(z = 0) depending on the position of the observation point

(x , y, z ), i. e.
”
cuts“ from this angular spectrum the angular

components (plane waves), which will pass through this

point of observation when the wave field propagates in the

free space z > 0. Function P(kx , ky ; x , y, z ) is different

from zero only for angular components of the wave field,

propagating at angles θ to axis Z from the range determined

by (24), and azimuthal angles α (each corresponding to the

certain value of angle θ), determined by (26). Therefore

for function P(kx , ky ; x , y, z ), using the filtering action of

δ-function, you can record the following expression:

P(kx , ky ; x , y, z ) =







































1
iλ

cos θ
R = 1

i2π

k2
−k2

x−k2
y

z k ,

at kx = kx(θL(γ);αL(γ)),

ky = ky (θL(γ);αL(γ));

0,

at kx 6= kx(θL(γ);αL(γ)),

k 6= ky (θL(γ);αL(γ)).

(29)

Expression (28) may then be written in the form similar

to expression (1),

U(x , y, z )=

+∞x

−∞

WL(kx , ky ; x , y, z)exp{i(kx x +kyy)}dkx dky ,

(30)
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where WL(kx , ky ; x , y, z ) — local angular spectrum of

excitation of the monochromatic wave field in the point of

observation (x , y, z ),

WL(kx , ky ; x , y, z ) = W06(kx , ky )P(kx , ky ; x , y, z )

× exp{ikz z} = W6(kx , ky , z )P(kx , ky ; x , y, z ), (31)

where, in its turn, W6(kx , ky , z ) — full angular spectrum of

monochromatic wave field developed by a source with the

finite linear aperture 6, in plane z > 0, where the point of

observation lies (x , y, z ), i. e. the angular spectrum of the

wave field in its classic sense.

Expression (31) determines the connection of the local

angular spectrum of monochromatic wave field excitation in

a certain point of observation with the full angular spectrum

of the wave field. This expression shows that same as in the

case with the full angular spectrum, the propagation of the

wave field in space causes phase incursions between the

angular components of the field. However, this changes

the quantitative and qualitative composition of the angular

components in the wave field disturbances when changing

from one point of observation to another.

Such local change of the quantitative and qualitative com-

position of the angular components in the wave field distur-

bances is determined by aperture function P(kx , ky ; x , y, z ),
playing the role of the angular receiving aperture of the point

of observation (x , y, z ). The range of spatial frequencies,

for which in the specified point of observation the function

P(kx , ky ; x , y, z ) is different from zero, is determined by

the body angle, at which the linear aperture of the

field source is seen from this point of observation. The

qualitative composition of the local angular spectrum of

monochromatic wave field disturbance in the specified point

of observation will be determined by the crossing of the

variation range of the full angular spectrum W06(kx , ky)
spatial frequencies in the wave field in the source plane with

the range of the spatial frequencies, for which the aperture

function P(kx , ky ; x , y, z ) in this point of observation is

different from zero. Besides, function P(kx , ky ; x , y, z ) will

also change, as per (29), the weight coefficients (amplitude)
of the wave field angular components reaching the point of

observation, thus varying the quantitative composition of the

local angular spectrum in this point.

For the previously considered unidimensional (y = 0)
case of the transverse distribution of the complex amplitude

of wave field disturbances, the source of which is the

amplitude diffraction grating with the finite linear aperture

of size D, the aperture function P(kx , x , z ) in accordance

with inequalities (25) will differ from zero for spatial

frequencies kx , meeting the condition

k sin

(

arctan

(

x−D/2

z

))

≤ kx ≤ k sin

(

arctan

(

x +D/2

z

))

.

(32)
Expression (32) shows that as distance z increases from

the plane of the source to the plane where the point of

observation is located, the range 1kx of spatial frequencies

kx , for which the aperture function P(kx , x , z ) differs

from zero, narrows down. Accordingly, this causes narrow-

ing of the local angular spectrum WL(kx , x , z ) of the wave

field as the point of observation is removed from the plane

of the source. From (32) it also follows that the increase in

the dimensions of the linear aperture D of the field source

with fixation of the point of observation, on the contrary

causes the increased range of the spatial frequencies 1kx ,

for which the aperture function P(kx , x , z ) is different from
zero, which in its turn causes the expansion of the local

angular spectrum WL(kx , x , z ). While the change of the

transverse coordinate of the point of observation x , as

per (32), causes in the general case the change in the

range of spatial frequencies 1kx , for which the aperture

function P(kx , x , z ) differs from zero, and to the change

of the value of the average spatial frequency of this range.

Expression (32) is received for the 2D distribution of the

monochromatic wave field disturbances in plane (XZ), but
the conclusions made on its basis may cover the 3D space,

too.

Fig. 8 shows the curves of absolute values of the full

angular spectrum in the plane of source W06(kx ) (thin
solid line), aperture function P(kx , x , z ) (dashed line) and

local angular spectrum WL(kx , x , z ) (thick solid line) for the
considered case of the monochromatic wave field developed

by the amplitude diffraction grating with the linear aperture

of size D, for conventional points 1, 2 and 3 in fig. 2.

Modeling parameters for fig. 8: λ = 0.55 µm, D = 10 µm,

d = 1µm, q = 0.8, x = 0.25D, z = 0.25D (fig. 8, a),
z = 0.75D (fig. 8, b), z = 1.75D (fig. 8, c). Modeling of

the angular spectrum in the plane of source W06(kx ) was

carried out using formula (14), and for convenience this

spectrum was normalized to maximum value. Side maxima

in curves |W06(kx)| of fig. 8 correspond to the beams with

the angles of propagation θ1 = −θ and θ2 = +θ, where θ

is determined by expression (13). Asymmetry of curve

|P(kx , x , z )| relative to zero spatial frequency is caused by

shift of the point of observation from the optical axis.

From fig. 8 you can see that as expected, as the point

of observation is removed from the point of observation

from the source, the aperture function narrows down, and

its amplitude decreases, which decreases the width of the

local angular spectrum and amplitudes of its components,

which, in its turn, characterizes the change of the local

spatial properties of considered monochromatic wave field

disturbances.

Conclusion

This paper introduces the concept of the local angular

spectrum of scalar monochromatic wave field disturbance

in a certain point of observation as a set of angular

components of the wave field passing through this point.

The main difference of the local angular spectrum from

the full angular spectrum of the wave field determined in

Fourier optics in a certain plane [1–6], perpendicular to the
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Figure 8. Curves of absolute values of the full angular spectrum

W06(kx ), aperture function P(kx , x, z ) and local angular spectrum

WL(kx , x, z ) of the monochromatic wave field developed by the

amplitude diffraction grating with finite linear aperture of size

D, for conventional points of observations in fig. 2: (a) point 1,

(b) point 2, (c) point 3.

main direction of the field propagation, consists in changing

the local angular spectrum as the point of observation

changes in space. The reason for such change are the finite

dimensions of the aperture in the real sources.

The finite aperture of the wave field source forms

an angular aperture of reception in a certain point of

observation that is determined by a body angle, at which the

source aperture is seen from this point. The local angular

spectrum of monochromatic wave field disturbance with

the finite linear aperture is determined by crossing of the

range of spatial frequencies of the full angular spectrum

of the wave field and the range of spatial frequencies

corresponding to the angular aperture of reception in the

point of observation. Therefore, it is actually shown that the

wave field disturbance from the source with the finite linear

aperture is determined in the specified point of observation

not by the full angular spectrum, but by its certain part only.

The fact that the local angular spectrum depends on the

body angle, at which the source aperture is seen from

the point of observation, leads to another difference of

this spectrum from the full angular spectrum of the wave

field: width of the local spectrum decreases when the linear

aperture of the source decreases.

In our opinion, the introduction of the concept of the local

angular spectrum makes it possible to more fully understand

the properties of the statistically heterogeneous spatially

limited scalar monochromatic wave field and reflects these

properties more visually. For example, a fact known well

theoretically and experimentally that the lengths of the

spatial correlation of the monochromatic wave field extend

both in transverse direction [1,3–5] and in the longitudinal

one (along the direction of the field propagation) [7–9,39]
at the distance from the source plane is explained by

the narrowing, depletion of the local angular spectra of

this field disturbances. The change of the local angular

spectrum of wave field disturbances when changing from

one spatial point to another, is, in our opinion, one of

the reasons for the complex amplitude-phase structure and

statistical heterogeneity of the spatially limited wave fields,

which manifests itself in the form of various features and

dislocations in interference of such fields [5,40,41].

This paper considers the propagation of the spatially

limited monochromatic wave field in the free homogeneous

and isotropic space and, actually, finds the cause for the

statistical spatial heterogeneity of such field. However, the

process of distribution of the wave fields with different

spectra and nature (visible optical, terahertz, X-ray, acoustic,
etc.) through the locally heterogeneous and anisotropic

media [28,42,43] is of great interest both from theoretical

and practical points of view, the example being biological

tissues or various composites. Modeling of such process is

a non-trivial task, requiring significant computing capacities

even with involvement of the state-of-the-art computing

technology, logics and simplifying models of medium

and wave field interaction. The concept of the local angular

spectrum introduced in this paper for the disturbances of

the scalar monochromatic wave field makes it possible to

reduce the time of computing procedures for determination

of the local parameters of such field as it propagates in

heterogeneous anisotropic media at the expense of the local

reduction of the band of spatial frequencies that generate a

wave disturbance in the point of observation, compared to

the full angular spectrum of the wave field.

The results obtained in this paper in our opinion may be

generalized both for scalar broadband frequency wave fields

and vector wave fields.
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