Mintairov M.A.
1, Evstropov V.V.
1, Kalyuzhnyy N.A.
1, Malevskii D.A.
1, Mintairov S.A.
1, Shvarts M.Z.
11Ioffe Institute, St. Petersburg, Russia
Email: mamint@mail.ioffe.ru
The luminescence intensity saturation of LEDs with quantum wells at an excessive concentration of carriers in the active region has been studied. The experimental electroluminescence spectra for a LED (area 1 mm2) based on the Al0.2Ga0.8As p-i-n- junction with six In0.1Ga0.9As quantum wells are analysed and the experimental dependence of the main peak electroluminescence intensity on current density is obtained. At low currents, this dependence is linear (proportional) and sublinear at high currents. Approximation of the sublinear region made it possible to estimate the magnitude of the current Jsat, at which saturation begins. The energy diagram of the quantum well is also considered and a theoretical model is proposed that makes it possible to independently calculate the value of Jsat. For the sample under study, the calculation showed that Jsat~ 30 A/cm2. In this case, the experimental value for the LED with six quantum wells was 210 A/cm2, which in terms of one well gives 35 A/cm2. The close correspondence between the calculated and experimental values confirms the applicability of the proposed model. An increase in the width of all electroluminescence peaks from quantum wells with increasing current was also experimentally observed. Keywords: LED, saturation of electroluminescence intensity.
- E.F. Schubert. Light-emitting diodes (Cambridge University Press, 2006)
- A.V. Malevskaya, N.A. Kalyuzhnyy, D.A. Malevskii, S.A. Mintairov, A.M. Nadtochiy, M.V. Nakhimovich, F.Y. Soldatenkov, M.Z. Shvarts, V.M. Andreev. FTP, 55 (8), 699 (2021) (in Russian). DOI: 10.21883/\FTP\.2021.08.51143.9665
- M. Hirotani, T.E. Sale, J. Woodhead, J.S. Roberts, P.N. Robson, T. Saka, T. Kato. J. of Crystal Growth, 170, 390-393 (1997). DOI: 10.1016/S0022-0248(96)00534-9
- N.E.J. Hunt, E.F. Schubert, D.L. Sivco, A.Y. Cho, G.J. Zydzik. Electron. Lett., 28 (23), 2169 (1992). DOI: 10.1049/el:19921392
- Y. Yu, X. Qin, B. Huang, J. Wei, H. Zhou, J. Pan, W. Chen, Y. Qi, X. Zhang, Z. Ren. Vacuum, 69 (4), 489-493 (2003). DOI: 10.1016/S0042-\207X\(02)00560-2
- H. De Neve, J. Blondelle, P. Van Daele, R. Baets, P. Demeester, G. Borghs. Electron. Lett., 30 (21),1787-1789 (1994). DOI: 10.1049/el:19941216
- T. Takamori, A.R. Pratt, T. Kamijoh. Appl. Phys. Lett., 74 (24), 3598-3600 (1999). DOI: 10.1063/1.123193
- H.-J. Lee, G.-H. Park, J.-S. So, C.-H. Lee, J.-H. Kim, L.-K. Kwac. Infrared Phys. Technol., 118, 103879 (2021). DOI: 10.1016/j.infrared.2021.103879
- D.-K. Kim, H.-J. Lee. J. Nanosci. Nanotechnol., 18 (3), 2014-2017 (2018). DOI: 10.1166/jnn.2018.14952
- M.A. Mintairov, V.V. Evstropov, S.A. Mintairov, A.M. Nadtochiy, R.A. Saliy, M.Z. Shvarts, N.A. Kalyuzhny. Pisma v ZhTF, 46 (12), 30 (2020) (in Russian). DOI: 10.21883/\PJTF\.2020.12.49524.18284
- M.A. Mintairov, V.V. Evstropov, S.A. Mintairov, R.A. Salii, M. Z. Shvarts, N.A. Kalyuzhnyy. Semiconductors, 52 (10), 1244-1248 (2018). DOI: 10.1134/S1063782618100135
- M.A. Mintairov, V.V. Evstropov, M.Z. Shvarts, S.A. Mintairov, R.A. Salii, N.A. Kalyuzhnyy. AIP Conf. Proc., 1747, 050003 (2016). DOI: 10.1063/1.4954366
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.