Physics of the Solid State
Volumes and Issues
Study of angular and temperature dependences of Cr3+ impurity luminescence in β-Ga2O3
Davydov V. Yu. 1, Kitaev Yu. E. 1, Averkiev N. S. 1, Smirnov A. N. 1, Eliseyev I.A. 1, Nelson D. K. 1, Panov D. I. 2, Spiridonov V. A. 2, Bauman D. A. 2, Romanov A. E. 2,1
1Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
Email: valery.davydov@mail.ioffe.ru, yu.kitaev@mail.ru, averkiev@les.ioffe.ru, alex.smirnov@mail.ioffe.ru, ilya.eliseyev@mail.ioffe.ru, D.Nelson@mail.ioffe.ru, dmitriipnv@itmo.ru, vladspiridonov@itmo.ru, dabauman@itmo.ru, alexey.romanov@niuitmo.ru

PDF
Using the combination of angle-resolved spectroscopy and symmetry analysis of the Cr3+ ion levels in the β-Ga2O3 matrix, the features of luminescence of Cr3+ impurity in monoclinic β-Ga2O3 doped with Cr were studied. For the first time, angular dependences of the intensities of the R1 and R2 Cr3+ lines were experimentally obtained and analyzed theoretically for three crystallographic planes (100), (010), and (001). For the first time, in the spectra of β-Ga2O3:Cr, two lines R3 and R4, which were not observed earlier, were detected. The nature of these lines was analyzed within the model of Cr3+-Cr3+ pair defects. Keywords: β-Ga2O3, Cr3+ impurity, photoluminescence, symmetry analysis.
  1. H.H. Tippins. Phys. Rev., 137, A865 (1965). DOI: 10.1103/PhysRev.137.A865
  2. E. Nogales, J.A. Garcia, B. Mendez, J. Piqueras. J. Appl. Phys., 101, 33517 (2007). DOI: 10.1063/1.2434834
  3. M. Peres, D.M. Esteves, B.M.S. Teixeira, J. Zanoni, L.C. Alves, E. Alves, L.F. Santos, X. Biquard, Z. Jia, W. Mu, J. Rodrigues, N.A. Sobolev, M.R. Correia, T. Monteiro, N. Ben Sedrine, K. Lorenz. Appl. Phys. Lett., 120, 261904 (2022). DOI: 10.1063/5.0089541
  4. V.Yu. Davydov, A.N. Smirnov, I.A. Eliseev, Yu.E. Kitaev, Sh.Sh. Sharofidinov, A.A. Lebedev, D.Yu. Panov, V.A. Spiridonov, D.A. Bauman, A.E. Romanov, V.V. Kozlovsky. FTP, 56, 573 (2023). (in Russian). https://doi.org/10.61011/FTP.2023.07.56794.5202C
  5. E. Hemmer, A. Benayas, F. Legare, F. Vetrone. Nanoscale Horiz., 1, 168 (2016). DOI: https://doi.org/10.1039/C5NH00073D
  6. D.A. Bauman, D.I. Panov, D.A. Zakgeim, V.A. Spiridonov, A.V. Kremleva, A.A. Petrenko, P.N. Brunkov, N.D. Prasolov, A.V. Nashchekin, A.M. Smirnov, M.A. Odnoblyudov, V.E. Bougrov, A.E. Romanov. Phys. Status. Solidi A, 218, 2100335 (2021). DOI:10.1002/pssa.202100335
  7. S. Sugano, Y. Tanabe. J. Phys. Soc. Japan, 13, 880 (1958). DOI: 10.1143/JPSJ.13.880
  8. A. Fiedler, Z. Galazka, K. Irmscher. J. Appl. Phys., 126, 213104 (2019). DOI: 10.1063/1.5125774
  9. J.E. Stehr, M. Jansson, D.M. Hofmann, J. Kim, S.J. Pearton, W.M. Chen, I.A. Buyanova. Appl. Phys. Lett., 119, 052101 (2021). DOI: 10.1063/5.0060628

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru