Comparative atomistic simulation of structure and structural transformations in Ni-Ag and Ni-Cu nanoalloys
Kolosov A. Yu.
1, Savina K. G.
1, Nepsha N. I.
1, Bogdanov S. S.
1, Sokolov D. N.
1, Grigoryev R. E.
1, Sdobnyakov N. Yu.
11Tver State University, Tver, Russia
Email: nsdobnyakov@mail.ru
The structure and structural transformations of binary Ni-Ag and Ni-Cu nanoparticles with a size of 3.2 nm were studied. The molecular dynamics method was used as a method for simulation the thermally induced effect. It was shown that the surface segregation of Ag and Cu atoms, respectively, is characteristic of binary Ni-Ag and Ni-Cu nanoparticles. Based on the analysis of caloric curves of the potential part of the specific internal energy and the energy spectrum of binary Ni-Ag and Ni-Cu nanoparticles, the features of the segregation behavior of Ag and Cu atoms were revealed. Similarities and differences in the processes of structure formation under thermally induced effects corresponding to heating and cooling are described. Keywords: binary nanoparticles, molecular dynamics, tight binding potential, structural transformations, core-shell structure.
- S.S. Bogdanov, N.Yu. Sdobnyakov. Zakonomernosti strukturoobrazovaniya v binarnykh nanochastitsakh GTsK metallov pri termicheskom vozdeystvii: atomisticheskoe modelirovanie. Izd-vo TvGU, Tver (2023) 144 s. (in Russian). DOI: 10.26456/bs.2023.144
- K.G. Savina, I.R. Galuzin, A.Yu. Kolosov, S.S. Bogdanov, A.D. Veselov, N.Yu. Sdobnyakov, Physical and Chemical Aspects of the Study of Clusters Nanostructures and Nanomaterials, 14, 499 (2022). DOI: 10.26456/pcascnn/2022.14.499
- V.I. Romanovski, A.Yu. Kolosov, A.A. Khort, V.S. Myasnichenko, K.B. Podbolotov, K.G. Savina, D.N. Sokolov, E.V. Romanovskaia6, N.Yu. Sdobnyakov, Physical and Chemical Aspects of the Study of Clusters Nanostructures and Nanomaterials, 12, 293 (2020). DOI: 10.26456/pcascnn/2020.12.293
- N. Sdobnyakov, A. Khort, V. Myasnichenko, K. Podbolotov, E. Romanovskaia, A. Kolosov, D. Sokolov, V. Romanovski. Comput. Mater. Sci. 184, 12 (2020). DOI: 10.1016/j.commatsci.2020.109936
- V.M. Samsonov, I.V. Talyzin, A.Yu. Kartoshkin, M.V. Samsonov. Fizika metallov i metallovedenie, 120, 6, 630 (2019). (in Russian). DOI: 10.1134/S0015323019060111
- V.M. Samsonov, I.V. Talyzin, A.Y. Kartoshkin, S.A. Vasilyev. Applied Nanoscience, 9, 119 (2019). DOI: 10.1007/s13204-018-0895-5
- Y. Chen, Q. Yuan. Chem. Phys. Lett. 806, 139979 (2022). DOI: 10.1016/j.cplett.2022.139979
- S. Serzat, G. Sebahattin. Comput. Mater. Sci. 183, 109842 (2020). DOI: 10.1016/j.commatsci.2020.109842
- M. Settem, P. Kumar, I. Adlakha, A.K. Kanjarla. Acta Mater. 234, 118038 (2022). DOI: 10.1016/j.actamat.2022.118038
- A.I. Tsiotsias, N.D. Charisiou, I.V. Yentekakis, M.A. Goula. Nanomaterials 11, 28 (2021). DOI: 10.3390/nano11010028
- H. Dai, S. Dimitriadou, P.S.S.R. Krishnan, A.D. Handoko, J. Recatala-Gomez, Y. Wang, D.V.M. Repaka, M. Thway, C. Zhang, M. Duchamp, K. Hippalgaonkar. ACS Applied Materials \& Interfaces, 15 (23), 28398 (2023). DOI: 10.1021/acsami.3c04124
- I.V. Talyzin, S.S. Bogdanov, V.M. Samsonov, N.Yu. Sdobnyakov, R.E. Grigorjev, A.V. Pervikov, I.V. Mishakov. Physical and Chemical Aspects of the Study of Clusters Nanostructures and Nanomaterials, 14, 307 (2022). DOI: 10.26456/pcascnn/2022.14.307
- F. Cleri, V. Rosato. Phys. Rev. B 48, 1, 22 (1993). DOI: 10.1103/PhysRevB.48.22
- B. Leimkuhler, E. Noorizadeh, F. Theil. J. Stat. Phys. 135, 2, 261 (2009). DOI: 10.1007/s10955-009-9734-0
- A.A. Samoletov, C.P. Dettmann, M.A.J. Chaplain. J. Stat. Phys. 128, 6, 1321 (2007). DOI: 10.1007/s10955-007-9365-2
- A. Stukowski. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010). DOI: 10.1088/0965-0393/18/1/015012
- F. Baletto, C. Mottet, R. Ferrando. Phys. Rev. Lett. 90, 13, 135504. DOI: 10.1103/PhysRevLett.90.135504
- S.N. Luo, A. Strachan, D.C. Swift, J. Chem. Phys. 120, 24, 11640 (2004). DOI: 10.1063/1.1755655
- R. Rasuli, A. Irajizad, M.M. Ahadian. Vacuum 84, 4, 469 (2009). DOI: 10.1016/j.vacuum.2009.10.009
- Y. Yang, Y.-A. Lin, X. Yan, F. Chen, Q. Shen, L. Zhang, N. Yan. ACS Appl. Energy Mater. 2, 12, 8894 (2019). DOI: 10.1021/acsaem.9b01923
- D. Bochicchio, R. Ferrando, E. Panizon, G. Rossi. J. Phys. Condens. Matter 6, 28, 064005 (2016). DOI: 10.1088/0953-8984/28/6/064005
- V.S. Myasnichenko, P.M. Ershov, S.S. Bogdanov, K.G. Savina, P.V. Matrenin, N.Yu. Sdobnyakov. Fiziko-khimicheskiye aspekty izucheniya klasterov, nanostruktur i nanomaterialov 12, 274 (2020). (in Russian). DOI: 10.26456/pcascnn/2020.12.274
- Yu.D. Chistyakov, Yu.P. Raynova. Fiziko-khimicheskie osnovy tekhnologii mikroelektroniki. Metallurgiya, M. (1979). 408 s. (in Russian)
- V.M. Samsonov, N.Yu. Sdobnyakov, A.Yu. Kolosov, S.S. Bogdanov, I.V. Talyzin, S.A. Vasiliev, K.G. Savina, V.V. Puytov, A.N. Bazulev. Kolloidniy zhurnal 86, 1, 118 (2024) (in Russian). DOI: 10.31857/S0023291224010114
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.