Total absorption of light wave by a two-dimensional array of metal nanoparticles on a metal surface
Glukhov I. A.
1,2, Moiseev S. G.
1,21Ulyanovsk State University, Ulyanovsk, Russia
2Kotel’nikov Institute of Radio Engineering and Electronics (Ulyanovsk Branch), Russian Academy of Sciences, Ulyanovsk, Russia
Email: glukhov91@yandex.ru, serg-moiseev@yandex.ru
A design of a composite film is proposed that provides a significant reduction in reflection from a metal surface (metal film) in a narrow band of the visible spectrum due to the effective absorption of incident light energy. The composite layer is a dielectric film of subwavelength thickness, in the volume of which a two-dimensional array of metal particles of a nanometer size is located. The spectral region of high absorption is specified by the frequency of the localized surface plasmon resonance of nanoparticles. The possibility of complete absorption of incident light near the frequency of the plasmon resonance of nanoparticles is shown with the matching of the parameters of the dielectric film, the array of nanoparticles and its location in the film. Keywords: nanocomposite coating, localized plasmon resonance, light-absorbing coating.
- U. Guler, A.V. Kildishev, A. Boltasseva, V.M. Shalaev. Faraday Discuss. 178, 71 (2015). https://doi.org/10.1039/C4FD00208C
- G. Barbillon. Mater. 12, 9, 1502 (2019). https://doi.org/10.3390/ma12091502
- K.M. Mayer, J.H. Hafner. Chem. Rev. 111, 6, 3828 (2011). https://doi.org/10.1021/cr100313v
- J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne. Nature Mater. 7, 6, 442 (2008). https://doi.org/10.1038/nmat2162
- M.I. Stockman. Phys. Today 64, 2, 39 (2011). https://doi.org/10.1063/1.3554315
- A.N. Oraevsky, I.E. Protsenko. Quantum Electronics 31, 3, 252 (2001). https://doi.org/10.1070/QE2001v031n03ABEH001927
- S.G. Moiseev, Russ. Phys. J. 52, 11, 1121 (2009). https://doi.org/10.1007/s11182-010-9349-6
- I.E. Protsenko, O.A. Zaimidoroga, V.N. Samoilov. J. Opt. A: Pure Appl. Opt. 9, 4, 363 (2007). https://doi.org/10.1088/1464-4258/9/4/009
- S.G. Moiseev, E.A. Pashinina, S.V. Sukhov. Quantum Electron. 37, 5, 446 (2007). https://doi.org/10.1070/QE2007v037n05ABEH013294
- S.G. Moiseev. Optics and Spectroscopy 111, 2, 233 (2011). https://doi.org/10.1134/S0030400X11080212
- H.A. Elsayed, T.A. Taha, S.A. Algarni, A.M. Ahmed, A. Mehaney. Optical. Quantum Electronics 54, 5, 312 (2022). https://doi.org/10.1007/s11082-022-03715-7
- Y. Dadoenkova, I. Glukhov, S. Moiseev, V. Svetukhin, A. Zhukov, I. Zolotovskii, Opt. Commun. 389, 1 (2017). https://doi.org/10.1016/j.optcom.2016.12.017
- S.G. Moiseev, I.A. Glukhov, Y.S. Dadoenkova, F.F.L. Bentivegna, J. Opt. Soc. Am. B 36, 6, 1645 (2019). https://doi.org/10.1364/JOSAB.36.001645
- S.G. Moiseev, I.A. Glukhov, V.A. Ostatochnikov, A.P. Anzulevich, S.N. Anzulevich. J. Appl. Spectrosc. 85, 3, 511 (2018). https://doi.org/10.1007/s10812-018-0681-x
- C.L. Holloway, M.A. Mohamed, E.F. Kuester, A. Dienstfrey, IEEE Trans. Electromagn. Compat. 47, 4, 853 (2005). https://doi.org/10.1109/TEMC.2005.853719
- M. Born, E. Wolf. Principles of Optics. Pergamon Press Ltd, London (1959)
- C.C. Katsidis, D.I. Siapkas. Appl. Opt. 41, 19, 3978 (2002). https://doi.org/10.1364/AO.41.003978
- U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters. Springer, Berlin (1995)
- L.V. Rodri guez-de Marcos, J.I. Larruquert, J.A. Mendez, J.A. Aznarez. Opt. Mater. Express 6, 11, 3622 (2016). https://doi.org/10.1364/OME.6.003622
- S. Moiseev, I. Glukhov. J. Appl. Phys. 135, 8, 083106 (2024). https://doi.org/10.1063/5.0190764
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.