Determination of a wide range of the spectrum of eigenfrequencies of the band of intermolecular vibrations of water 184 cm-1; some properties of these frequencies
Kraiski A. V.1, Kraiski A. A.1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: kraiskiav@lebedev.ru

PDF
Based on the previously developed method for determining the eigenfrequencies of intermolecular vibrations of liquid water using the previously obtained set of 65 Raman spectra, a set of eigenfrequencies for the hydrogen bond stretching mode was obtained, and the range and main properties of the eigenfrequencies were determined. For the given set were obtained all possible eigenfrequency values, located in a wide band of 169-209 cm-1, and some properties and structural features of the main characteristics in this band were determined.. The developed algorithm for dividing a two-dimensional distribution of a compact array of points into groups of points adjacent to the straight lines approximating them within a narrow strip is presented. The analysis of the ordered by magnitude eigenfrequencies and point densities per unit frequency interval in the group and the ordered by the strip width of the group of point densities per unit frequency interval was carried out. These characteristics were compared with the same characteristics of three sets of randomly scattered points with the same statistical characteristics as the spectral points of water. Distinctive features of water were revealed. It has been suggested that the reason for the discovered features is the existence of some structures in the water. Keywords: intermolecular vibrations of water, hydrogen bond, band of eigenfrequencies, stretching mode, points on a plane, approximating line, point density, point extraction algorithm.
  1. G.S. Landsberg. Usp. Khim., 1 (4), 465 (1932) (in Russian)
  2. M.V. Vol'kenshtein. Usp. Fiz. Nauk, 18 (2), 153 (1937) (in Russian)
  3. A. Smekal. Naturwiss., 11, 873 (1923)
  4. H. Kramers, W. Heisenberg. Z. Physik, 31, 681 (1925)
  5. P.A.M. Dirac. Proc. Roy. Soc. A, 114, 710 (1927)
  6. M. Magat. Comptes Rendus, 196, 1981 (1933)
  7. G. Bolla. Nuovo Cimento, 10, 101 (1933)
  8. M. Magat. Ann. de Phys., 6, 108 (1936)
  9. E. Gross, M. Vuks. J. Physique, 6, 457 (1933); ibid., 7, 113 (1936)
  10. G.G. Malenkov. J. Struct. Chem., 48 (4), 723 (2007). DOI: 10.1007/s10947-007-0110-0
  11. J.L. Finney. J. Chem. Phys., 160, 060901 (2024). DOI: 10.1063/5.0182665
  12. J. Bernal, R. Fauler. Usp. Fiz. Nauk, 14, 586 (1934) (in Russian)
  13. R. Shuker, R.W. Gammon. J. Chem. Phys., 55, 4784 (1971)
  14. M.H. Brooker, O.F. Nielsen, E. Praestgaard. J. Raman Spectr., 19, 71 (1988)
  15. A.V. Kraiski, N.N. Mel'nik. A.A. Kraiski. Opt. Spektrosk., 128 (2), 195 (2020). DOI: 10.21883/OS.2020.02.48960.339-18 A.V. Kraiskii, N.N. Mel'nik, A.A. Kraiskii. Opt. Spectrosc., 128 (2), 191 (2020)
  16. A.V. Kraiski, N.N. Mel'nik. Bull. Lebedev Phys. Inst., 32 (12), 21 (2005)
  17. A.V. Kraiskii, N.N. Mel'nik. Opt. Spectrosc., 124 (5), 660 (2018). DOI: 10.1134/S0030400X18050120
  18. Y. Amo, Y. Tominaga. Physica A, 276, 401 (2000)
  19. G.E. Walrafen, Y.C. Chu, H.R. Carlon. In: Proton transfer in hydrogen-bonded systems (Plenum Press, NY., 1992)
  20. G.E. Walrafen, Y.C. Chu, G.J. Piermarini. J. Phys. Chem., 100, 10363 (1996)
  21. A.V. Kraiski, N.N. Mel'nik. Biophysics, 57 (6), 750 (2012)
  22. A.V. Kraiski, N.N. Mel'nik. A.A. Kraiski. Opt. Spektrosk., 130 (10), 1506 (2022). DOI: 10.21883/OS.2022.10.53620.2621-22
  23. A. Idrissi, S. Longelin, F.J. Sokolivc. Phys. Chem. B, 105, 6004 (2001)
  24. A.V. Kraiski, N.N. Mel'nik. Bull. Lebedev Phys. Inst., 33 (1), 41 (2006)
  25. A.V. Kraiski, N.N. Mel'nik. Bull. Lebedev Physics Institute, 33 (1), 34 (2006)
  26. V.P. Voloshin, E.A. Zheligovskaya, G.G. Malenkov, et al. Ross. Khim. Zh. (Zh. Ross. Khim. O-va. im. D.I. Mendeleeva), 45 (3), 31 (2001) (in Russian)
  27. S.D. Zakharov. Biophysics, 57 (6), 814 (2012)
  28. A.V. Kraiskii, N.N. Mel'nik. In: Kombinatsionnoe rasseyanie --- 80 let issledovanii (Fiz. Inst. Akad. Nauk, M., 2008), pp. 339--351 (in Russian)
  29. A.V. Kraiskii, A.A. Kraiskii. In: 5-ya Vserossiiskaya konferentsiya "Fizika vodnykh rastvorov" (Inst. Obshch. Fiz. Ross. Akad. Nauk, M., 2022), p. 75 (in Russian). DOI: 10.24412/cl-35040-2022-75-75 [Electronic source] URL:http://physwatsol.ru/proceedings
  30. A.V. Kraiskii. In: Sbornik trudov 6-i Vserossiiskoi konferentsii "Fizika vodnykh rastvorov" (Inst. Obshch. Fiz. Ross. Akad. Nauk, M., 2023), p. 110 (in Russian). DOI: 10.24412/cl-35040-2023-110-110 [Electronic source] URL:http://physwatsol.ru/proceedings
  31. A.V. Kraiskii, N.N. Mel'nik, A.A. Kraiskii. In: Sbornik trudov 4-i Vserossiiskoi konferentsii "Fizika vodnykh rastvorov" (Inst. Obshch. Fiz. Ross. Akad. Nauk, M., 2021), p. 58 (in Russian). DOI: 10.24412/Cl-35040-2021-58-58 [Electronic source] URL:http://physwatsol.ru/proceedings

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru