Analysis of optical properties of disordered array of hemispherical Ag nanoparticles on SiO2/c-Si by spectroscopic ellipsometry
Ermina A. A.1, Bolshakov V.O.1, Prigoda K. V.1, Tolmachev V. A.1, Grudinkin S. A.1, Zharova Yu. A.1
1Ioffe Institute, St. Petersburg, Russia
Email: annaermina97@gmail.com, lion080895@gmail.com, kristina_prigoda@mail.ru, tva@mail.ioffe.ru, grudink.gvg@mail.ioffe.ru, piliouguina@mail.ioffe.ru

PDF
In this work, a disordered array of self-organized hemispherical Ag nanoparticles on a SiO_2/Si surface was studied. The structures were obtained by a simple, reproducible and low-cost method based on the reduction of Ag from solution on the silicon surface, followed by annealing in an O2 atmosphere at 350oC. Experimental data are analyzed using the Bruggeman effective medium approximation and Lorentz oscillators which determined the volume fraction of Ag and plasmon resonances positions, respectively. The numerical spectral positions of localized surface plasmon resonances are in good agreement with the data obtained by spectroscopic ellipsometry. Keywords: hemispherical Ag nanoparticles, single-crystal silicon, localized surface plasmon resonance, spectroscopic ellipsometry, effective medium approximation.
  1. S.A. Maier. Plasmonics: Fundamentals and Applications, 1st ed. (Springer New York, NY, 2007). DOI: 10.1007/0-387-37825-1
  2. Y.H. Jang, Y.J. Jang, S. Kim, L.N. Quan, K. Chung, D.H. Kim. Chem. Rev., 116 (24), 14982 (2016). DOI: 10.1021/acs.chemrev.6b00302
  3. H.A. Atwater, A. Polman. Nat. Mater., 9, 205 (2010). DOI: 10.1038/nmat2629
  4. M. Pan, J. Yang, K. Liu, Z. Yin, T. Ma, S. Liu, L. Xu, S. Wang. Nanomat., 10 (2), 209 (2020). DOI: 10.3390/nano10020209
  5. I. Shutsko, M. Buchmuller, M. Meudt, P. Gorrn. Adv. Opt. Mater., 10 (9), 2102783 (2022). DOI: 10.1002/adom.202102783
  6. B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne. Mat. Tod., 15 (1-2), 16 (2012). DOI: 10.1016/S1369-7021(12)70017-2
  7. J. Langer et al. ACS Nano, 14 (1), 28 (2020). DOI: 10.1021/acsnano.9b04224
  8. M. Lippitz, M.A. Van Dijk, M. Orrit. Nano Lett., 5 (4), 799 (2005). DOI: 10.1021/nl0502571
  9. Z.-W. Yang, L.-Y. Meng, J.-S. Lin, W.-M. Yang, P. Radjenovic, S.-X. Shen, Q.-C. Xu, Z.-L. Yang, Z.-Q. Tian, J.-F. Li. Adv. Opt. Mater., 7 (23), 1901010 (2019). DOI: 10.1002/adom.201901010
  10. J.-A. Huang, Y.-L. Zhang, H. Ding, H.-B. Sun. Adv. Opt. Mater., 3 (5), 618 (2015). DOI: 10.1002/adom.201400534
  11. K. Rhee, A. Tukova, M.T. Yaraki, Y. Wang. Nanoscale, 15 (5), 2087 (2023). DOI: 10.1039/D2NR05287C
  12. A. Das, U. Pant, C. Cao, R.S. Moirangthem, H.B. Kamble. Nano Res., 16, 1132 (2023). DOI: 10.1007/s12274-022-4745-0
  13. X. Lu, M. Rycenga, S.E. Skrabalak, B. Wiley, Y. Xia. Annu. Rev. Phys. Chem., 60, 167 (2009). DOI: 10.1146/annurev.physchem.040808.090434
  14. S. Szunerits, M.R. Das, R. Boukherroub. J. Phys. Chem. C., 112 (22), 8239 (2008). DOI: 10.1021/jp800478h
  15. W.J. Ho, S.K. Fen, J.J. Liu. Appl. Phys. A., 124, 29 (2018). DOI: 10.1007/s00339-017-1451-y
  16. T.W.H. Oates, H. Wormeester, H. Arwin. Prog. Surf. Sci., 86 (11-12), 328 (2011). DOI: 10.1016/j.progsurf.2011.08.004
  17. D.A.G. Bruggeman. Ann. Phys., 416, 636 (1935). DOI: 10.1002/andp.19354160705
  18. P. Drude. Ann. Phys., 270 (7), 489 (1888). DOI: 10.1002/andp.18882700706
  19. C. Tanguy. Phys. Rev. B, 60 (15), 10660 (1999). DOI: 10.1103/PhysRevB.60.10660
  20. M. Voue, N. Dahmouchene, J. De Coninck. Thin Solid Films, 519 (9), 2963 (2011)
  21. A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A.N. Grigorenko, J. Leng, A. Le Beulze, M. Treguer-Delapierre, M.A. Correa-Duarte, P. Barois. Opt. Mater. Express, 3 (11), 1792 (2013). DOI: 10.1364/OME.3.001792
  22. M. Lonv caric, J. Sancho-Parramon, H. Zorc. Thin Solid Films, 519 (9), 2946 (2011). DOI: 10.1016/j.tsf.2010.12.06
  23. M.N. Perera, D. Schmidt, W.E.K. Gibbs, S. Juodkazis, P.R. Stoddart. Opt. Lett., 41 (23), 5495 (2016). DOI: 10.1364/OL.41.005495
  24. M.S. Gangwar, P. Agarwal. Phys. Scr., 98 (10), 105944 (2023). DOI: 10.1088/1402-4896/acf796
  25. H. Fujiwara. Spectroscopic ellipsometry: principles and applications, 1st ed (John Wiley \& Sons, Hoboken, USA, 2007)
  26. A.A. Ermina, N.S. Solodovchenko, V.S. Levitskii, N.A. Belskaya, S.I. Pavlov, V.O. Bolshakov, V.A. Tolmachev, Yu.A. Zharova. Mater. Sci. Semicond. Process., 169, 107861 (2024). DOI: 10.1016/j.mssp.2023.107861
  27. A.A. Ermina, N.S. Solodovchenko, K.V. Prigoda, V.S. Levitskii, V.O. Bolshakov, M.Yu. Maximov, Y.M. Koshtyal, S.I. Pavlov, V.A. Tolmachev, Y.A. Zharova. Appl. Surf. Sci., 608, 155146 (2023). DOI: 10.1016/j.apsusc.2022.155146
  28. V.A. Tolmachev, E.V. Gushchina, I.A. Nyapshaev, Yu.A. Zharova. Thin Solid Films, 756, 139352 (2022). DOI: 10.1016/j.tsf.2022.139352
  29. Y. Zharova, A. Ermina, S. Pavlov, Y. Koshtyal, V. Tolmachev. Phys. Status Solidi A, 216 (17), 1900318 (2019). DOI: 10.1002/pssa.201900318
  30. V.A. Tolmachev, Y.A. Zharova, A.A. Ermina, V.O. Bolshakov. Opt. Spectr., 130 (2), 238 (2022). DOI: 10.21883/EOS.2022.02.53215.2668-21
  31. U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters, 1st ed (Springer Berlin, Heidelberg, 1995). DOI: 10.1007/978-3-662-09109-8
  32. Handbook of ellipsometry, ed. by H.G. Tompkins, E.A. Irene (William Andrew Pub., Norwich and Springer, Heidelberg, 2005).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru