Analysis of optical properties of disordered array of hemispherical Ag nanoparticles on SiO2/c-Si by spectroscopic ellipsometry
Ermina A. A.1, Bolshakov V.O.1, Prigoda K. V.1, Tolmachev V. A.1, Grudinkin S. A.1, Zharova Yu. A.1
1Ioffe Institute, St. Petersburg, Russia
Email: annaermina97@gmail.com, lion080895@gmail.com, kristina_prigoda@mail.ru, tva@mail.ioffe.ru, grudink.gvg@mail.ioffe.ru, piliouguina@mail.ioffe.ru
In this work, a disordered array of self-organized hemispherical Ag nanoparticles on a SiO_2/Si surface was studied. The structures were obtained by a simple, reproducible and low-cost method based on the reduction of Ag from solution on the silicon surface, followed by annealing in an O2 atmosphere at 350oC. Experimental data are analyzed using the Bruggeman effective medium approximation and Lorentz oscillators which determined the volume fraction of Ag and plasmon resonances positions, respectively. The numerical spectral positions of localized surface plasmon resonances are in good agreement with the data obtained by spectroscopic ellipsometry. Keywords: hemispherical Ag nanoparticles, single-crystal silicon, localized surface plasmon resonance, spectroscopic ellipsometry, effective medium approximation.
- S.A. Maier. Plasmonics: Fundamentals and Applications, 1st ed. (Springer New York, NY, 2007). DOI: 10.1007/0-387-37825-1
- Y.H. Jang, Y.J. Jang, S. Kim, L.N. Quan, K. Chung, D.H. Kim. Chem. Rev., 116 (24), 14982 (2016). DOI: 10.1021/acs.chemrev.6b00302
- H.A. Atwater, A. Polman. Nat. Mater., 9, 205 (2010). DOI: 10.1038/nmat2629
- M. Pan, J. Yang, K. Liu, Z. Yin, T. Ma, S. Liu, L. Xu, S. Wang. Nanomat., 10 (2), 209 (2020). DOI: 10.3390/nano10020209
- I. Shutsko, M. Buchmuller, M. Meudt, P. Gorrn. Adv. Opt. Mater., 10 (9), 2102783 (2022). DOI: 10.1002/adom.202102783
- B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne. Mat. Tod., 15 (1-2), 16 (2012). DOI: 10.1016/S1369-7021(12)70017-2
- J. Langer et al. ACS Nano, 14 (1), 28 (2020). DOI: 10.1021/acsnano.9b04224
- M. Lippitz, M.A. Van Dijk, M. Orrit. Nano Lett., 5 (4), 799 (2005). DOI: 10.1021/nl0502571
- Z.-W. Yang, L.-Y. Meng, J.-S. Lin, W.-M. Yang, P. Radjenovic, S.-X. Shen, Q.-C. Xu, Z.-L. Yang, Z.-Q. Tian, J.-F. Li. Adv. Opt. Mater., 7 (23), 1901010 (2019). DOI: 10.1002/adom.201901010
- J.-A. Huang, Y.-L. Zhang, H. Ding, H.-B. Sun. Adv. Opt. Mater., 3 (5), 618 (2015). DOI: 10.1002/adom.201400534
- K. Rhee, A. Tukova, M.T. Yaraki, Y. Wang. Nanoscale, 15 (5), 2087 (2023). DOI: 10.1039/D2NR05287C
- A. Das, U. Pant, C. Cao, R.S. Moirangthem, H.B. Kamble. Nano Res., 16, 1132 (2023). DOI: 10.1007/s12274-022-4745-0
- X. Lu, M. Rycenga, S.E. Skrabalak, B. Wiley, Y. Xia. Annu. Rev. Phys. Chem., 60, 167 (2009). DOI: 10.1146/annurev.physchem.040808.090434
- S. Szunerits, M.R. Das, R. Boukherroub. J. Phys. Chem. C., 112 (22), 8239 (2008). DOI: 10.1021/jp800478h
- W.J. Ho, S.K. Fen, J.J. Liu. Appl. Phys. A., 124, 29 (2018). DOI: 10.1007/s00339-017-1451-y
- T.W.H. Oates, H. Wormeester, H. Arwin. Prog. Surf. Sci., 86 (11-12), 328 (2011). DOI: 10.1016/j.progsurf.2011.08.004
- D.A.G. Bruggeman. Ann. Phys., 416, 636 (1935). DOI: 10.1002/andp.19354160705
- P. Drude. Ann. Phys., 270 (7), 489 (1888). DOI: 10.1002/andp.18882700706
- C. Tanguy. Phys. Rev. B, 60 (15), 10660 (1999). DOI: 10.1103/PhysRevB.60.10660
- M. Voue, N. Dahmouchene, J. De Coninck. Thin Solid Films, 519 (9), 2963 (2011)
- A. Baron, A. Iazzolino, K. Ehrhardt, J.-B. Salmon, A. Aradian, V. Kravets, A.N. Grigorenko, J. Leng, A. Le Beulze, M. Treguer-Delapierre, M.A. Correa-Duarte, P. Barois. Opt. Mater. Express, 3 (11), 1792 (2013). DOI: 10.1364/OME.3.001792
- M. Lonv caric, J. Sancho-Parramon, H. Zorc. Thin Solid Films, 519 (9), 2946 (2011). DOI: 10.1016/j.tsf.2010.12.06
- M.N. Perera, D. Schmidt, W.E.K. Gibbs, S. Juodkazis, P.R. Stoddart. Opt. Lett., 41 (23), 5495 (2016). DOI: 10.1364/OL.41.005495
- M.S. Gangwar, P. Agarwal. Phys. Scr., 98 (10), 105944 (2023). DOI: 10.1088/1402-4896/acf796
- H. Fujiwara. Spectroscopic ellipsometry: principles and applications, 1st ed (John Wiley \& Sons, Hoboken, USA, 2007)
- A.A. Ermina, N.S. Solodovchenko, V.S. Levitskii, N.A. Belskaya, S.I. Pavlov, V.O. Bolshakov, V.A. Tolmachev, Yu.A. Zharova. Mater. Sci. Semicond. Process., 169, 107861 (2024). DOI: 10.1016/j.mssp.2023.107861
- A.A. Ermina, N.S. Solodovchenko, K.V. Prigoda, V.S. Levitskii, V.O. Bolshakov, M.Yu. Maximov, Y.M. Koshtyal, S.I. Pavlov, V.A. Tolmachev, Y.A. Zharova. Appl. Surf. Sci., 608, 155146 (2023). DOI: 10.1016/j.apsusc.2022.155146
- V.A. Tolmachev, E.V. Gushchina, I.A. Nyapshaev, Yu.A. Zharova. Thin Solid Films, 756, 139352 (2022). DOI: 10.1016/j.tsf.2022.139352
- Y. Zharova, A. Ermina, S. Pavlov, Y. Koshtyal, V. Tolmachev. Phys. Status Solidi A, 216 (17), 1900318 (2019). DOI: 10.1002/pssa.201900318
- V.A. Tolmachev, Y.A. Zharova, A.A. Ermina, V.O. Bolshakov. Opt. Spectr., 130 (2), 238 (2022). DOI: 10.21883/EOS.2022.02.53215.2668-21
- U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters, 1st ed (Springer Berlin, Heidelberg, 1995). DOI: 10.1007/978-3-662-09109-8
- Handbook of ellipsometry, ed. by H.G. Tompkins, E.A. Irene (William Andrew Pub., Norwich and Springer, Heidelberg, 2005).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.