Совершенствование схемы ионного двигателя I. Зависимость параметров эффективности от величины индукции магнитного поля
Федянин Н.К.1, Селиванов М.Ю.1, Кравченко Д.А.1, Сабитова А.В.1
1Государственный научный центр РФ "Исследовательский центр им. М.В. Келдыша", Москва, Россия
Email: nikita.fedyanin@gmail.com
Поступила в редакцию: 7 марта 2024 г.
В окончательной редакции: 2 июля 2024 г.
Принята к печати: 17 июля 2024 г.
Выставление онлайн: 29 октября 2024 г.
Для оптимизации работы газоразрядной камеры ионного двигателя были разработаны и изготовлены четыре конфигурации магнитной системы с одинаковой топологией магнитного поля, но различной величиной его индукции. Описаны условия и результаты огневых испытаний двигателя при использовании разработанных конфигураций. На основе экспериментальных данных проанализированы зависимости параметров эффективности ионного двигателя от величины индукции магнитного поля. Повышению величины индукции в газоразрядной камере соответствует повышение напряжения разряда, а также снижение однородности распределения плотности тока пучка ионов и цены иона. Ключевые слова: электроракетный двигатель, газоразрядная камера, ионно-оптическая система, пучок ионов, цена иона, газовая эффективность.
- R.J. Jahn. Physics of Electric Propulsion (Mc-Graw Hill Book Company, NY., St. Louis, San-Francisco, Toronto, London, Sydney, 1968)
- M. Sangregorio, K. Xie, N. Wang, N. Guo, Z. Zhang. Chinese J. Aeronautics, 31 (8), 1635 (2018). DOI: 10.1016/j.cja.2018.06.005
- D.R. Lev, I.G. Mikellides, D. Pedrini, D.M. Goebel, B.A. Jorns, M.S. McDonald. Rev. Modern Plasma Phys., 3 (1), Art. Num. 6 (2019). DOI: 10.1007/s41614-019-0026-0
- D.M. Goebel, I. Katz. Fundamentals of Electric Propulsion (John Wiley \& Sons, Inc., 2008), DOI: 10.1002/9780470436448
- A. Sengupta. J. Appl. Phys., 105 (9), 093303 (2009). DOI: 10.1063/1.3106087
- T. Ogunjobi, J.A. Menart. Computational Study of Ring-Cusp Magnet Configurations that Provide Maximum Electron Confinement. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2006-4489, 2006. DOI: 10.2514/6.2006-4489
- R.E. Wirz, D.M. Goebel. Ion Thruster Discharge Performance per Magnetic Field Topography. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2006-4487, 2006. DOI: 10.2514/6.2006-4487
- S. Mahalingam, J.A. Menart. Computational Model Tracking Primary Electrons, Secondary Electrons and Ions in the Discharge Chamber of an Ion Engine. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2005-4253, 2005. DOI: 10.2514/6.2005-4253
- R.E. Wirz. Discharge Plasma Processes of Ring-Cusp Ion Thrusters. Dissertation, 2005
- S. Mahalingam, J.A. Menart. Physical Parametric Studies in an Ion Engine Discharge Chamber Using a PIC-MCC Simulation. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2008-4733, 2008. DOI: 10.2514/6.2008-4733
- D.A. Kravchenko, A.A. Shagayda, M.Y. Selivanov, A.S. Shashkov, D.Y. Tomilin, I.A. Khmelevskoi, A.S. Lovtsov. J. Propulsion Power, 38 (12), 1 (2022). DOI: 10.2514/1.B38405
- B. Bias, B. Penkal, M. Jonell, J.A. Menart, S. Mahalingam. Off Design Simulation Results of Several Operating Conditions of the NEXT Discharge Chamber. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2011-5660, 2011. DOI: 10.2514/6.2011-5660
- W. Bennett, T. Ogunjobi, J.A. Menart. Computational Study of the Effects of Cathode Placement, Electron Energy, and Magnetic Field Strength on the Confinement of Electrons. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2007-5248, 2007. DOI: 10.2514/6.2007-5248
- D.M. Goebel, J.E. Polk, A. Sengupta. Discharge Chamber Performance of the NEXIS Ion Thruster. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-3813, 2004. DOI: 10.2514/6.2004-3813
- J.R. Beattie, J.N. Matossian. Inert-gas Ion Thruster Technology. NASA Contract Report, NAS 3-23860, 1992
- A. Sengupta. Experimental Investigation of Discharge Plasma Magnetic Confinement in the NSTAR Ion Thruster. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2005-4069, 2005. DOI: 10.2514/6.2005-4069
- S. Deshpande, S. Mahalingam, J.A. Menart. Computational Study of Primary Electrons in the Cusp Region of an Ion Engine's Discharge Chamber. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-4109, 2004. DOI: 10.2514/6.2004-4109
- S. Mahalingam, J.A. Menart. J. Propulsion Power, 23 (1), 69 (2007). DOI: 10.2514/1.18366
- S. Mahalingam, J.A. Menart. Primary Electron Modeling in the Discharge Chamber of an Ion Engine. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2002-4262, 2002. DOI: 10.2514/6.2002-4262
- R.E. Wirz, D.M. Goebel. Plasma Sources Sci. Technol., 17 (3), 035010 (2008). DOI: 10.1088/0963-0252/17/3/035010
- D.M. Goebel, J.E. Polk, I. Sandler, I.G. Mikellides, J.R. Brophy, W.G. Tighe, K. Chien. Evaluation of 25-cm XIPS Thruster Life for Deep Space Mission Applications. 36th International Electric Propulsion Conf., 2009-152, 2009
- J.R. Anderson, J.S. Snyder, J.L. Van Noord, G.C. Soulas. Thermal Development Test of the NEXT PM1 Ion Engine. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2007-5217, 2007. DOI: 10.2514/6.2007-5217
- J.E. Polk, D.M. Goebel, J.S. Snyder, A.C. Schneider, L.K. Johnson, A. Sengupta. Rev. Scientif. Instrum., 83 (7), 073306 (2012). DOI: 10.1063/1.4728415
- А.С. Ловцов, Д.А. Кравченко, Д.А. Томилин, А.А. Шагайда. Физика плазмы, 48 (9), 792 (2022). DOI: 10.31857/S0367292122600339
- B. Dankongkakul, R.E. Wirz. Plasma Sources Sci. Technol., 27 (12), 125001 (2018). DOI: 10.1088/1361-6595/aae63c
- S.A. Samples, R.E. Wirz. Development Status of the Miniature Xenon Ion Thruster. 36th International Electric Propulsion Conf., 2019-143, 2019
- S.A. Samples, R.E. Wirz. Plasma Research Express, 2 (2), 025008 (2020). DOI: 10.1088/2516-1067/ab906d
- J.R. Beattie, J.N. Matossian. R.R. Robson. J. Propulsion Power, 6 (2), 145 (1990). DOI: 10.2514/3.23236
- K. Chien, S.L. Hart, W.G. Tighe, M.K. De Pano, T.A. Bond, R. Spears. Development Status of the Miniature Xenon Ion Thruster. 29th International Electric Propulsion Conf., 2005-315, 2005
- J. Foster, G. Soulas, M. Patterson. Plume and Discharge Plasma Measurements of an NSTAR-type ion thruster. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2000-3812, 2000. DOI: 10.2514/6.2000-3812
- D.A. Herman. The Use of Electrostatic Probes to Characterize the Discharge Plasma Structure and Identify Discharge Cathode Erosion Mechanisms in Ring-Cusp Ion Thrusters. Dissertation, 2005
- A. Sengupta, D.M. Goebel, A. Owens. Neutral Density Measurements in an NSTAR Ion Thruster. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2006-4491, 2006. DOI: 10.2514/6.2006-4491
- R.E. Wirz, D.M. Goebel. Plasma Sources Sci. Technol., 17 (3), 035010 (2008). DOI: 10.1088/0963-0252/17/3/035010
- T.M. Randolph, J.E. Polk. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-3450, 2004. DOI: 10.2514/6.2004-3450
- A.W. Hoskins, F.C. Wilson, M.J. Patterson, G.C. Soulas, J. Polaha, L. Talerico, J. Sovey. Development of a Prototype Model Ion Thruster for the NEXT System. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-4111, 2004. DOI: 10.2514/6.2004-4111
- S. Mahalingam, Y. Choi, J. Loverich, P.H. Stoltz, B. Bias, J.A. Menart. Fully Coupled Electric Field/PIC-MCC Simulation Results of the Plasma in the Discharge Chamber of an Ion Engine. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2011-6071, 2011. DOI: 10.2514/6.2011-6071
- H. Yoshida, H. Kawauchi, S. Takama, T. Maeda, T. Higuchi, K. Akai, Y. Hayakawa, K. Miyazaki, S. Kitamura, H. Nagano. Performance Characteristics of a 35-cm Diameter Xenon Ion Thruster. 32nd Joint Propulsion Conf. and Exhibit, 1996-2714, 1996. DOI: 10.2514/6.1996-2714
- Y. Hayakawa, H. Yoshida, S. Kitamura, K. Kajiwara, Y. Ohkawa. Status of the 150-mN Ion Engine Research at JAXA. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, 2004-3969, 2004. DOI: 10.2514/6.2004-3969
- S. Kitamura, Y. Ohkawa, Y. Hayakawa, H. Yoshida, K. Miyazaki. Overview and Research Status of the JAXA 150-mN Ion Engine. 57th International Astronautical Congress, IAC-06-C4.4.1, 2006. DOI: 10.2514/6.iac-06-c4.4.01
- S. Kitamura, Y. Ohkawa, Y. Hayakawa, H. Yoshida, K. Miyazaki. Acta Astronautica, 61 (1-6), 360 (2007). DOI: 10.1016/j.actaastro.2007.01.010
- M.Y. Selivanov, A.S. Lovtsov. IT-200PM Ring-Cusp Ion Thruster. 36th International Electric Propulsion Conf., 2019-339, 2019
- M. Coletti, N. Wallace, S.B. Gabriel, D. Frollani, H. Simpson. Ring Cusp Ion Engine Development in the UK. 30th International Electric Propulsion Conf., 2015-130, 2015
- В.В. Кошлаков, К.В. Готовцев, Л.Э. Захаренков, А.В. Каревский, Е.Н. Кирюшин, А.С. Ловцов, Ю.А. Ошев, А.В. Семенкин, А.Е. Солодухин, С.Ю. Федотов, С.Ю. Федюнин, А.Г. Цветков. Космическая техника и технологии, 1 (36), 80 (2022). [V.V. Koshlakov, K.V. Gotovtsev, L.E. Zakharenkov, A.V. Karevskiy, E.N. Kiryushin, A.S. Lovtsov, Yu.A. Oshev, A.V. Semenkin, A.E. Solodukhin, S.Yu. Fedotov, S.Yu. Fedyunin, A.G. Tsvetkov. Space Engineering Technol., 1 (36), 80 (2022). DOI: 10.33950/spacetech-2308-7625-2022-1-80-95]