The effect of tin on the properties of gallium nitride grown by hydride vapor-phase epitaxy
Osipov A. V.
1, Sharafutdinov Sh.Sh.
2, Osipova E. V
1, Redkov A. V.
3, Kukushkin S. A.
31Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3St. Petersburg State University, St. Petersburg, Russia
Email: andrey.v.osipov@gmail.com, sergey.a.kukushkin@gmail.com
An n-type GaN layer doped with Sn was grown by hydride vapor-phase epitaxy (HVPE). Tin doping was carried out by a chemical reaction with the formation of SnCl2 and its subsequent decomposition in the presence of NH3. It has been shown that doping with tin leads to the disappearance of cracks and a decrease in the roughness of GaN. The optical properties of tin-doped GaN have been investigated. It is shown that in the Raman spectrum of GaN : Sn a thick zone of lines appears in the region from 620 to 740 cm-1, associated with fluctuations in Sn-N bonds. The conduction electrons produced by doping GaN with tin absorb light in the region of 2.2-3.3 eV. Using the density functional theory, it is shown that Sn atoms strongly interact with each other in a GaN crystal in an anisotropic manner, determining the local symmetry group of the doped crystal. Keywords: gallium nitride, density functional theory, hydride vapor-phase epitaxy, ion radius, Raman spectrum.
- Wide Bandgap Semiconductors / Eds K. Takahashi, A. Yoshikawa, A. Sandhu. Springer, Berlin (2007). 460 p
- Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion/Eds G. Meneghesso, M. Meneghini, E. Zazoni. Springer, Cham. (2018). 232 p
- K. Mochizuki. Vertical GaN and SiC Power Devices. Artech House, Norwood (2018). 263 p
- H.D.Jabbar, M.A. Fakhri, M.J. AbdulRazzaq. Mater. Today: Proc. 42, 2829 (2021). DOI: 10.1016/j.matpr.2020.12.729
- K. Hamasaki, K. Ohnishi, Sh. Nitta, N. Fujimoto, H. Watanabe, Y. Honda, H. Amano. J. Cryst. Growth 628, 127529. DOI: 10.1016/j.jcrysgro.2023.127529
- S.A. Kukushkin, A.V. Osipov. Condens. Matter Interphas. 24, 407 (2022). DOI: 10.1134/S1070363222040028
- S.A. Kukushkin, A.V. Osipov. Russ. J. General Chem. 92, 584 (2022). DOI: 10.1134/S1070363222040028
- S.A. Kukushkin, L.K. Markov, A.S. Pavlyuchenko, I.P. Smirnova, A.V. Osipov, A.S. Grashchenko, A.E. Nikolaev, A.V. Sakharov, A.F. Tsatsulnikov, G.V. Sviatets. Coatings 13, 1142 (2023). DOI: 10.3390/coatings13071142
- G. Kresse, J. Furthmuller. Phys. Rev. B 54, 11169 (1996). DOI: 10.1103/PhysRevB.54.11169
- J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke. Phys. Rev. Lett. 100, 136406 (2008). DOI: 10.1103/PhysRevLett.100.136406
- J.G. Lee. Computational Materials Science. CRS Press, Boca Raton (2017). 351 p
- G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999). DOI: 10.1103/PhysRevB.59.1758
- Ellipsometry at the Nanoscale / Eds M. Losurdo, K. Hingerl. Springer, Berlin (2013). 730 p
- S.A. Kukushkin, A.V. Osipov. Materials 15, 4653 (2022). DOI: 10.3390/ma15134653
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.