Physics of the Solid State
Volumes and Issues
Structure evolution during the transformation of Si into SiC by the method of coordinated substitution of atoms
Kukushkin S. A. 1, Vorobev M.G. 1, Osipov A. V. 1, Grashchenko A. S. 1, Ubyivovk E.V. 1,2
1Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: sergey.a.kukushkin@gmail.com, vmaximg@bk.ru, asgrashchenko@bk.ru, ubyivovk@gmail.com

PDF
Using the example of the formation of epitaxial silicon carbide (SiC) layers on silicon (Si) by the method of coordinated substitution of atoms, studies have been conducted on the evolution of the structure during phase transformations in multicomponent crystals with chemical reactions. A significant change over time in the microstructure and properties of the formed SiC layers was observed. The microstructure and properties of the SiC/Si layers were analyzed using the method of photoluminescence (PL), reflection high-energy electron diffraction (RHEED), the method of spectroscopic ellipsometry (SE), and the evolution of the structure of the SiC-Si interface boundary was studied using the method of scanning electron microscopy (SEM). It was found that during the first five minutes of synthesis, a change in the reconstruction of the SiC surface occurs, moreover, elastic deformations change from compressive to tensile. It was also found that during the synthesis of SiC on Si(111), both a (3x3) and a (2x1) reconstruction can form on the SiC surface. Keywords: silicon carbide on silicon, surface reconstruction, topochemical reactions, elastic deformation, photoluminescence, diffusion zone, nanostructures, microstructure evolution, AlN, GaN, AlGaN.
  1. S.A. Kukushkin, A.V. Osipov. J. Phys. D 47, 313001 (2014). DOI: 10.1088/0022-3727/47/31/313001
  2. S.A. Kukushkin, A.V. Osipov, N.A. Feoktistov. FTT 56, 8, 1457 (2014). (in Russian). DOI: 10.1134/S1063783414080137
  3. S.A. Kukushkin, A. V. Osipov. Inorganic Materials 57, 13, 1319 (2021). DOI: 10.1134/S0020168521130021
  4. S.A. Kukushkin, A.V. Osipov. Russ. J. Gen. Chem. 92, 4, 547 (2022). DOI: 10.1134/S1070363222040028
  5. S.A. Kukushkin, A.V. Osipov. Kondensirovannye sredy i mezhfaznye granitsy, 24, 4, 407 (2022). (in Russian). DOI: 10.17308/kcmf.2022.24/10549
  6. A. Severino, C. Locke, R. Anzalone, M. Camarda, N. Piluso, A. La Magna, S. Saddow, G. Abbondanza, G. D'Arrigo, F. La Via. ECS Trans. 35, 6, 99 (2011). DOI: 10.1149/1.3570851
  7. G. Ferro. Crit. Rev. Solid State Mater. Sci. 40, 1, 56 (2015). DOI: 10.1080/10408436.2014.940440
  8. S. Nishino, J.A. Powell, H.A. Will. Appl. Phys. Lett. 42, 5, 460 (1983). DOI: 10.1063/1.93970
  9. J. Pezoldt, Th. Kups, Th. Stauden, B. Schroter. Mater. Sci. Eng. B 165, 28 (2009). DOI: 10.1016/j.mseb.2009.03.015
  10. F. Iacopi, G. Walker, L. Wang, L. Malesys, Sh. Ma, B.V. Cunning, A. Iacopi. Appl. Phys. Lett. 102, 011908 (2013). DOI: 10.1063/1.4774087
  11. S.A. Kukushkin, A.V. Osipov. Zhurn. neorgan. khimii (2024). (in Russian). V pechati
  12. S.A. Kukushkin, A. V. Osipov, E.V. Osipova. Tech. Phys. Lett. 48, 10, 78 (2022). DOI: 10.21883/TPL.2022.10.54806.19310)
  13. S.A. Kukushkin, L.K. Markov, A.S. Pavlyuchenko, I.P. Smirnova, A.V. Osipov, A.S. Grashchenko, A.E. Nikolaev, A.V. Sakharov, A.F. Tsatsulnikov, G.V. Sviatets. Coatings 8, 7, 1142 (2023). DOI: 10.3390/coatings13071142
  14. S.A. Kukushkin, A.V. Osipov, E.V. Osipova, V.M. Stozharov. Phys. Solid State 64, 3, 327 (2022). DOI: 10.21883/PSS.2022.03.53187.232
  15. I.A. Eremeev, M.G. Vorobev, A.S. Grashchenko, A.V. Semencha, A.V. Osipov, S.A. Kukushkin. Phys. Solid State 65, 1, 68 (2023). DOI: 10.21883/PSS.2023.01.54976.480
  16. L.K. Markov, S.A. Kukushkin, I.P. Smirnova, A.S. Pavlyuchenko, A.S. Grashchenko, A.V. Osipov, G.V. Svyatets, A.E. Nikolayev, A.V. Sakharov, V.V. Lundin, A.F. Tsatsulnikov. Pis'ma v ZhTF 47, 18, 3 (2021). (in Russian). DOI: 10.21883/PJTF.2021.18.51462.18877
  17. I.P. Kalinkin, S.A. Kukushkin, A.V. Osipov. Semiconductors 52, 802 (2018). DOI: 10.1134/S1063782618060118
  18. A. Fissel. Phys. Rep. 379, 147 (2003). DOI: 10.1016/S0370-1573(02)00632-4
  19. V.V. Balashev, V.V. Korobtsov, T.A. Pisarenko, L.A. Chebotkevich, N.N. Galkin FTT 52, 2, 370 (2010). (in Russian)
  20. A.Yu. Aristov. UFN 171, 8, 801 (2001). (in Russian). DOI: 10.3367/UFNr.0171.200108a.0801
  21. V. Cimalla, Th. Stauden, G. Ecke, F. Scharmann, G. Eichhorn, J. Pezoldt, S. Sloboshanin, J. A. Schaefer. Appl. Phys. Lett. 73, 3542 (1998). DOI: 10.1063/1.122801
  22. J. Schardt, J. Bernhardt, U. Starke, K. Heinz. Phys. Rev. B 62, 10335 (2000). DOI: 10.1103/PhysRevB.62.10335
  23. G.V. Benemanskaya, P.A. Dementev, S.A. Kukushkin, M.N. Lapushkin, A.V. Osipov, B. Senkovskiy, S.N. Timoshnev. Mater. Phys. Mech. 22, 183 (2015)
  24. R. Kaplan. Surf. Sci. 215, 1-2, 111 (1989). DOI: 10.1016/0039-6028(89)90704-8
  25. S.A. Kukushkin, A. V. Osipov. Materials 15, 4653 (2022). DOI: 10.3390/ma15134653
  26. S.A. Kukushkin, A.V. Osipov, I.P. Soshnikov. Rev. Adv. Mater. Sci. 52, 29 (2017)
  27. M.E. Kompan, I.G. Aksyanov, I.V. Kulkova, S.A. Kukushkin, A.V. Osipov, N.A. Feoktistov. FTT 51, 12, 2326 (2009) (in Russian)
  28. H.W. Shim, K.C. Kim, Y.H. Seo, K.S. Nahm, E.-K. Suh, H.J. Lee, Y.G. Hwang. Appl. Phys. Lett. 70, 13, 31 1757 (1997). DOI: 10.1063/1.118648

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru