Physics of the Solid State
Volumes and Issues
Electron Paramagnetic Resonance in non-stoichiometric cobaltite NaxCoO2 and study of the influence of degradation processes on properties of NaxCoO2 system
Fatukhov R.R.1, Gavrilova T.P.1, Yagfarova A.R.1, Lyadov N.M.1, Khantimerov S.M.1, Suleimanov N.M. 1
1Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
Email: nail.suleimanov@mail.ru

PDF
Electron Paramagnetic Resonance (EPR) measurements of non-stoichiometric cobaltite NaxCoO2 in the sodium concentration range x=0.53; 0.58; 0.64; 0.75; 0.76; 0.79 were carried out and the effect of degradation processes on the properties of NaxCoO2 system were studied. ESR signal was detected in sample with maximum sodium concentration Na0.79CoO2. Analysis of the obtained results on EPR allows us to say that the observed resonance signal is due to the magnetic ions Co4+ the appearance of which in the system under study is associated with sodium non-stoichiometry and possible presence of anti-structural defects caused by the localisation of cobalt ions in sodium positions. At low temperatures a sharp decrease in the width of the resonance line, g-factor and integral intensity of resonance signal was observed that indicates that in the Na0.79CoO2 sample the magnetic phase transition takes place. It has been established that after long-term storage under ambient conditions EPR signal in the sample Na0.79CoO2 disappear. The structural and electron microscopic studies carried out show that as a result of long-term storage of samples, the essential changes of phase composition take place. Keywords: EPR, cathode materials, non-stoichiometric systems, magnetism, phase transitions.
  1. P. Rozier, J.M. Tarascon. J. Electrochem. Soc. 162, 14, A2490 (2015)
  2. V.R.R. Boddu, D. Puthusseri, P.M. Shirage, P. Mathur, V.G. Pol. 27, 4549 (2021)
  3. I. Terasaki. Physica B: Condens. Matter 383, 1, 107 (2006)
  4. N. Kaurav, K.K. Wu, Y.K. Kuo, G.J. Shu, F.C. Chou. Phys. Rev. B 79, 075105 (2009)
  5. L. Wang, Q. Shi, C. Zhan, G. Liu. Materials 16, 8, 3079 (2023)
  6. P. Carretta, M. Mariani, C.B. Azzoni, M.C. Mozzati. Phys. Rev. B 70, 024409 (2004)
  7. M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater. Chem. Mater. 17, 5085 (2005)
  8. F.A. Nizamov, P.N. Togulev, D.R. Abdullin, S.M. Khantimerov, P. Balaya, N.M. Suleymanov. FTT 58, 3, 464 (2016)
  9. H. Okabea, M. Matoba, T. Kyomen, M. Itoh. J. Appl. Phys. 95, 6831 (2004)
  10. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, F.A. Dilanian, T. Sasaki, Nature (London) 422, 53, (2003)
  11. T. Motohashi, R. Ueda, E. Naujalis, T. Tojo, I. Terasaki, T. Atake, M. Karpinnen, H. Yamauchi. Phys. Rev. B 67, 064406-1 (2003)
  12. J.L. Gaviliano, D. Rau, B. Pedrini, H.R. Ott, S.M. Kazakov, J. Karpinski. Phys. Rev. B 69, 100404-1 (2004)
  13. T.P. Gavrilova, A.R. Yagfarova, Y.A. Deeva, I.V. Yatsyk, I.F. Gilmutdinov, M.A. Cherosov, F.G. Vagizov, T.I. Chupakhina, R.M. Eremina. J. Phys. Chem. Solids 153, 109994 (2021)
  14. Y. Sassa, I. Umegaki, H. Nozaki, O.K. Forslund, C. Delmas, J.-C. Orain, A. Amato, D. Andreica, M. Mansson, J. Sugiyama. JPS Conf. Proc., 011019 (2018)
  15. G.J. Shu, A. Prodi, S.Y. Chu, Y.S. Lee, H.S. Sheu, F.C. Chou. Phys. Rev. B 76, 184115 (2007)
  16. MAUD - Materials Analysis Using Diffraction (and more) [Electronic source] / Licensing. Available at: https://luttero.github.io/maud/

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru