Physics of the Solid State
Volumes and Issues
Anomalous mechanical behavior of ultrafine-grained Al-Mg-Zr alloy at low temperature
Sadykov D. I. 1,2, Murashkin M. Yu. 3, Kirilenko D. A.1, Levin A. A. 1, Lihachev A. I. 1, Orlova T. S. 1
1Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
3Ufa University of Science and Technology, Ufa, Russia
Email: dinislames@mail.ru, m.murashkin.70@gmail.com, aleksandr.a.levin@mail.ioffe.ru, lihachev_alexey@bk.ru, orlova.t@mail.ioffe.ru

PDF
The effect of deformation temperature on strength and ductility of ultrafine-grained (UFG) low-alloyed Al-Mg-Zr alloy before and after special deformation-heat treatment (DHT) consisting of low-temperature short-term annealing and a small additional deformation, was investigated in the temperature range 77-293 K. UFG structure was obtained by high-pressure torsion processing. It has been established that DHT leads to a substantially enhanced ductility (7-13%) while maintaining high strength (yield stress ~300-435 MPa, ultimate tensile strength ~370-490 MPa) over the entire temperature range studied. In the post-DHT state, an anomalous character of temperature dependences of the strength and ductility in the temperature range of 243-293 K is observed for the first time, which is unusual for coarse-grained and UFG Al-based alloys. A possible explanation for such anomalous temperature dependences of strength and ductility is proposed, based on the competition between various thermally activated processes at grain boundaries with inverse temperature dependences. Keywords: Aluminum alloys, ultrafine-grained microstructure, ductility, strength, grain boundaries.
  1. K. Son, M.E. Kassner, T.K. Lee, J.W. Lee. Mater. Des. 224, 111336 (2022). https://doi.org/10.1016/j.matdes.2022.111336
  2. D.H. Park, S.W. Choi, J.H. Kim, J.M. Lee. Cryogenics 68, 44 (2015). https://doi.org/10.1016/j.cryogenics.2015.02.001
  3. W.S. Park, M.S. Chun, M.S. Han, M.H. Kim, J.M. Lee. Mater. Sci. Eng. A 528, 18, 5790 (2011). https://doi.org/10.1016/j.msea.2011.04.032
  4. K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W. Botta et all. Mater. Res. Lett. 10, 4, 163 (2022). https://doi.org/10.1080/21663831.2022.2029779
  5. D.C. Machado, P.C.A. Flausino, Y. Huang, P.R. Cetlin, T.G. Langdon, P.H.R. Pereira, J. Mater. Res. Technol. 24, 2850 (2023). https://doi.org/10.1016/j.jmrt.2023.03.167
  6. E. Damavandi, S. Nourouzi, S.M. Rabiee, R. Jamaati, J.A. Szpunar. J. Mater. Sci. 56, 3535 (2021). https://doi.org/10.1007/s10853-020-05479-5
  7. X.M. Mei, Q.S. Mei, J.Y. Li, C.L. Li, L. Wan, F. Chen, Z.H. Chen, T. Xu, Y.C. Wang, Y.Y. Tan. J. Mater. Sci. Technol. 125, 238 (2022). https://doi.org/10.1016/j.jmst.2022.02.029
  8. K. Changela, H. Krishnaswamy, R.K. Digavalli, Mater. Sci. Eng. A 760, 7 (2019). https://doi.org/10.1016/j.msea.2019.05.088
  9. Z. Be'zi, G. Kra'llics, M. El-Tahawy, P. Pekker, J. Gubicza. Mater. Sci. Eng. A 688, 210 (2017). https://doi.org/10.1016/j.msea.2017.01.112
  10. A.S. Al-Zubaydi, N. Gao, S. Wang, P.A. Reed. J. Mater. Sci. 57, 19, 8956 (2022). https://doi.org/10.1007/s10853-022-07234-4
  11. M. Howeyze, A.R. Eivani, H. Arabi, H.R. Jafarian. Mater. Sci. Eng. A 732, 120 (2018). https://doi.org/10.1016/j.msea.2018.06.081
  12. X. Li, W. Xia, J. Chen, H. Yan, Z. Li, B. Su, M. Song. Met. Mater. Int. 27, 1 (2021). https://doi.org/10.1007/s12540-020-00929-w
  13. Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu. Adv. Mater. 18, 17, 2280 (2006). https://doi.org/10.1002/adma.200600310
  14. A.M. Mavlyutov, T.A. Latynina, M.Y. Murashkin, R.Z. Valiev, T.S. Orlova. Phys. Solid State 59, 1970 (2017). https://doi.org/10.1134/S1063783417100274
  15. T.S. Orlova, N.V. Skiba, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev, M.Y. Gutkin. Rev. Adv. Mater. Sci. 57, 2, 224 (2018). https://doi.org/10.1515/rams-2018-0068
  16. X. Huang, N. Hansen, N. Tsuji. Science 312, 5771, 249 (2006). https://doi.org/10.1126/science.1124268
  17. T.S. Orlova, D.I. Sadykov, D.A. Kirilenko, A.I. Lihachev, A.A. Levin. Mater. Sci. Eng. A 875, 145122 (2023). https://doi.org/10.1016/j.msea.2023.145122
  18. T.S. Orlova, A.M. Mavlyutov, D.I. Sadykov, N.A. Enikeev, M.Y. Murashkin. Metals 13, 9, 1570 (2023). https://doi.org/10.3390/met13091570
  19. D. Zhemchuzhnikova, R. Kaibyshev. Adv. Eng. Mater. 17, 12, 1804 (2015). https://doi.org/10.1002/adem.201500138
  20. D. Zhemchuzhnikova, S. Malopheyev, S. Mironov, R. Kaibyshev. Mater. Sci. Eng. A 598, 387 (2014). https://doi.org/10.1016/j.msea.2014.01.060
  21. Y. Ma, C. Liu, K. Miao, H. Wu, R. Li, X. Li, G. Fan. J. Alloys Compd. 947, 169559 (2023). https://doi.org/10.1016/j.jallcom.2023.169559
  22. D.C.C. Magalhaes, A.M. Kliauga, V.L. Sordi. Trans. Nonferrous Met. Soc. China 31, 3, 595 (2021). https://doi.org/10.1016/S1003-6326(21)65522-X
  23. D.C.C. Magalhaes, A.M. Kliauga, M.F. Hupalo, O.M. Cintho, C.A. Della Rovere, M. Ferrante, V.L. Sordi. Mater. Sci. Eng. A 768, 138485 (2019). https://doi.org/10.1016/j.msea.2019.138485
  24. T.S. Orlova, A.M. Mavlyutov, M.Y. Gutkin. Mater. Sci. Eng. A 802, 140588 (2021). https://doi.org/10.1016/j.msea.2020.140588
  25. T.S. Orlova, A.M. Mavlyutov, M.Y. Murashkin, N.A. Enikeev, A.D. Evstifeev, D.I. Sadykov, M.Y. Gutkin. Materials 15, 23, 8429 (2022). https://doi.org/10.3390/ma15238429
  26. T.S. Orlova, D.I. Sadykov, D.V. Danilov, M.Y. Murashkin. J. Alloys Compd. 931, 167540 (2023). https://doi.org/10.1016/j.jallcom.2022.167540
  27. P.L. Sun, C.Y. Yu, P.W. Kao, C.P. Chang. Scr. Mater. 52, 4, 265 (2005). https://doi.org/10.1016/j.scriptamat.2004.10.022
  28. T.S. Orlova, T.A. Latynina, M.Y. Murashkin, F. Chabanais, L. Rigutti, W. Lefebvre. J. Alloys Compd. 859, 157775 (2021). https://doi.org/10.1016/j.jallcom.2020.157775
  29. P.H.L. Souza, C.A.S. de Oliveira, J.M. do Vale Quaresma. J. Mater. Res. Technol. 7, 1, 66 (2018). https://doi.org/10.1016/j.jmrt.2017.05.006
  30. G.K. Williamson, R.E. Smallman III. Philos. Mag. 1, 1, 34 (1956). https://doi.org/10.1080/14786435608238074
  31. J. Hirth, I. Lothe. Theory of Dislocations. Atomizdat, Moscow. (1972). 600 p
  32. T.S. Orlova, T.A. Latynina, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev. J. Alloys. Compd. 784, 41 (2019). https://doi.org/10.1016/j.jallcom.2018.12.324
  33. T.A. Latynina, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev, T.S. Orlova. Phil. Mag. 99, 19, 2424 (2019). https://doi.org/10.1080/14786435.2019.1631501
  34. K.E. Knipling, D.C. Dunand, D.N. Int. J. Mater. Res. 97, 3, 246 (2022). https://doi.org/10.1515/ijmr-2006-0042
  35. A.V. Mikhaylovskaya, A.G. Mochugovskiy, V.S. Levchenko, N.Yu. Tabachkova, W. Mufalo, V.K. Portnoy. Mater. Charact. 139, 30 (2018). https://doi.org/10.1016/j.matchar.2018.02.030
  36. M. Zha, H. Zhang, H. Jia, Y. Gao, S. Jin, G. Sha, R. Bj rge, R.H. Mathiesen, H.J. Roven, H. Wang, Y. Li. Int. J. Plast. 146, 103108 (2021). https://doi.org/10.1016/j.ijplas.2021.103108
  37. C. Chen, Y. Chen, J. Yu, M. Liu, J. Zhang. J. Alloys. Compd. 983, 173905 (2024). https://doi.org/10.1016/j.jallcom.2024.173905
  38. J. Xue, S. Jin, X. An, X. Liao, J. Li, G. Sha. J. Mater. Sci. Technol. 35, 5, 858 (2019). https://doi.org/10.1016/j.jmst.2018.11.017
  39. Y. Liu, M. Liu, X. Chen, Y. Cao, H.J. Roven, M. Murashkin, R.Z. Valiev, H. Zhou. Scr. Mater. 159, 137 (2019). https://doi.org/10.1016/j.scriptamat.2018.09.033
  40. J.E. Hatch. Aluminum: properties and physical metallurgy. 1st ed. ASM International: Metals Park, OH (1984). 424 p
  41. J.L. Gonzalez-Velazquez. Fractography and failure analysis. Springer International Publishing, Switzerland (2018). 165 p
  42. M.K. Pathak, A. Joshi, K.K.S. Mer. Trans. Indian Inst. Met. 74, 679 (2021). https://doi.org/10.1007/s12666-021-02198-6
  43. ASM Handbook Volume 12: Fractography. 9th ed. ASM International: Metals Park, OH. (1987). 517 p
  44. G. Wang, D. Song, Z. Zhou, Y. Liu, N. Liang, Y. Wu, A. Ma, J. Jiang. J. Mater. Res. Technol. 15, 2419 (2021). https://doi.org/10.1016/j.jmrt.2021.09.085
  45. D. Zhou, X. Zhang, H. Wang, Y. Li, B. Sun, D. Zhang. Int. J. Plast. 157, 103405 (2022). https://doi.org/10.1016/j.ijplas.2022.103405
  46. J. Kang, X. Liu, T. Wang. Scr. Mater. 224, 115121 (2023). https://doi.org/10.1016/j.scriptamat.2022.115121
  47. H. Sun, W. Zhang, Y. Xu, Q. Li, X. Zhuang, Z. Zhao. Scr. Mater. 222, 115025 (2023). https://doi.org/10.1016/j.scriptamat.2022.115025
  48. T. Tian, M. Zha, H.L. Jia, Z.M. Hua, P.K. Ma, H.Y. Wang. Mater. Sci. Eng. A 880, 145376 (2023). https://doi.org/10.1016/j.msea.2023.145376
  49. D. Bae, S.H. Kim, D.H. Kim, W.T. Kim. Acta Mater. 50, 2343 (2002). https://doi.org/10.1016/S1359-6454(02)00067-8
  50. X.R. Zhang, G.X. Sun, W. Zai, Y. Jiang, Z.H. Jiang, S. Han, G.L. Bi, D.Q. Fang, J.S. Lian. Mater. Sci. Eng. A 799, 140141 (2021). https://doi.org/10.1016/j.msea.2020.140141
  51. N.Q. Chinh, T. Csanadi, T. Gyori, R.Z. Valiev, B.B. Straumal, M. Kawasaki, T.G. Langdon. Mater. Sci. Eng. A 543, 117 (2012). https://doi.org/10.1016/j.msea.2012.02.056
  52. D. Hull, D.J. Bacon. Introduction to dislocations. 5th ed. Elsevier, Butterworth-Heinemann, Oxford. (2011). 272 p
  53. V.I. Vladimirov. The physical theory of plasticity and strength. Ch. I. LPI, L. (1973). 120 p. (in Russian)
  54. O. Renk, A. Hohenwarter, V. Maier-Kiener, R. Pippa. J. Alloys Compd. 935, 168005 (2023). https://doi.org/10.1016/j.jallcom.2022.168005
  55. O. Renk, V. Maier-Kiener, I. Issa, J.H. Li, D. Kiener, R. Pippan. Acta Mater. 165, 409 (2019). https://doi.org/10.1016/j.actamat.2018.12.002

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru