Physics of the Solid State
Volumes and Issues
Effect of deformation on the radiation formation of interlayer bridges in bilayer graphene
Podlivaev A. I.1,2
1National Research Nuclear University “MEPhI”, Moscow, Russia
2Research Institute of Problems in the Development of Scientific and Educational Potential of Young People, Moscow, Russia
Email: AIPodlivayev@mephi.ru

PDF
Within the framework of the non-orthogonal tight-binding model, the influence of uniform stretching of bilayer graphene on the process of radiation formation of interlayer bridges in this structure was studied. Model calculations have shown that stretching bilayer graphene by 5% increases the total probability of the formation of defects of all types by ~2 times. It is shown that the proportion of structures with interlayer bridges that have sufficient thermal stability for long-term existence at room temperature does not depend on deformation. In deformed and undeformed bilayer graphene, this fraction is ~15%. One of the found stable structures with an interlayer bridge is a type of Frenkel pair and has an annealing activation energy of 2.11 eV. In earlier work, when simulating the irradiation of undeformed bilayer graphene within a similar model, this defect was not observed Keywords: Bilayer graphene, radiation defects, interlayer bridges, deformation, molecular dynamics.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru