Analysis of dielectric spectra taking into account the distribution of relaxers over relaxation times
Ilyinsky A. V.1, Shadrin E. B.1
1Ioffe Institute, St. Petersburg, Russia
Email: ilinskiy@mail.ioffe.ru, shadr.solid@mail.ioffe.ru
A numerical analysis of the features of the dielectric spectra of crystalline substances deposited on insulating substrates, excluding the possibility of through-current flow, is carried out. The analysis is based on the use of the distribution function of the numbers of relaxers according to their relaxation times. It is shown that the principles of numerical analysis are different for different types of features of dielectric spectra. The Gavrilyak-Negami function is used to analyze features occupying narrow frequency ranges (Δω≤1 order of magnitude ω).For wider ranges (Δω~ 2-3 orders of magnitude), the improved Gavrilyak-Negami function is used.For the broadest features (Δω>3 orders of magnitude), the role of the distribution function is played by the function of the frequency dependence of the imaginary part of the dielectric constant ε''(f), which is obtained experimentally.Before use, this function is converted to the function ε''(tau), and the shape of this function is adjusted using a special algorithm. Keywords: dielectric spectroscopy, complex permittivity, dielectric loss angle tangent, Debye distribution, Gavrilyak-Negami function.
- A.M. Prokhorov. Dielekticheskie izmereniya. Sov. entsiklopediya, M. (1988). T. 1. P. 700. (in Russian)
- A.A. Volkov, A.S. Prokhorov. FTP 46, 8, 657 (2003). (in Russian)
- R. Richert. Adv. Chem. Phys. 156, 101 (2015)
- A.S. Volkov, G.D. Koposov, R.O. Perfil'ev, A.V. Tyagunin. Optika i spektroskopiya 124, 2, 206 (2018). (in Russian)
- A.S. Volkov, G.D. Koposov, R.O. Perfilyev. Optika i spektroskopiya 125, 3, 364 (2018). (in Russian)
- A.I. Gusev. Osnovy dielekticheskoy spektoskopii. Kazan (2008). P. 112. (In Russian)
- D.N. Chausov. Liq. Cryst. Appl. 18, 3, 45 (2018)
- A.M. Maharramov, R.S. Ismailova, M.A. Nuriyev, A.A. Nabiyev. Plastics 1, 1 (2019)
- D.S. Anikonov, D.S. Konovalova. Sib. mat. zhurn. 43, 987, 387 (2002). (in Russian)
- K.S. Cole, R.H. Cole. J. Chem. Phys. 99, 4, 341 (1941)
- S. Havriliak, S. Negami. J. Polym. Sci. 14, 99 (1966)
- Yu.I. Yurasov, A.V. Nazarenko. Nauka Yuga Rossii 14, 4, 35 (2018). (in Russian)
- R.O. Perfilyev, G.D. Koposov, A.S. Volkov. Vestn. Severnogo Federal'nogo un-ta im. M.V. Lomonosova (2017). (in Russiaon). P. 155-156
- K.G. Bogolitsyn, S.S. Khviyuzov, A.S. Volkov, G.D. Koposov, M.A. Gusakova. Zhurn. fiz. khimii 93, 2, (2019). (in Russian)
- P.A.M. Dirac. Lectures on Quantum Field Theoty, N. Y. (1967) P. 234
- P.A.M. Dirac. Printsipy kvantovoy mekhaniki. Mir, M. (1968) P. 481. (in Russian)
- A.N. Kolmogorov, S.V. Fomin. Elementy teorii funktsiy i funktsional'nogo analiza. Nauka, M. (1968), P. 496. (in Russian)
- I.M. Gelfand, G.E. Shilov. Oboshchennye funktsii i deistviya nad nimi. Gos. izd-vo fiz.-mat. li-ry (1959) P. 472. (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.